
Laboratory Exercise 4
Polling and Interrupts

The purpose of this exercise is to learn how to send and receive data to/from I/O devices. There are two
methods used to indicate whether or not data can be sent or is ready to be received to/from I/O devices. The first
method,polling, is where the processor queries devices to see if they can receive data or have data available. The
second method,interrupts, is when devices indicate to the processor that they can receive data or that they have
data available, without the processor explicitly requesting.

A simple and commonly used scheme for transferring data between a processor and an I/O device is known
as theUniversal Asynchronous Receiver Transmitter (UART). A UART interface (circuit) is placed between the
processor and the I/O device. It handles data one 8-bit character at a time. The transfer of data between the UART
and the processor is done in parallel fashion, where all bitsof a character are transferred at the same time using
separate wires. However, the transfer of data between the UART and the I/O device is done in bit-serial fashion,
transferring the bits one at a time.

Altera’s SOPC Builder can implement an interface of the UARTtype for use in Nios II systems, which is
called the JTAG UART. This circuit can be used to provide a connection between a Nios II processor and the
host computer connected to Altera’s DE2 board. Figure 1 shows a block diagram of the JTAG UART circuit.
On one side the JTAG UART connects to the Avalon switch fabric, while on the other side it connects the host
computer via the USB-Blaster interface. The JTAG UART core contains two registers:Data andControl, which
are accessed by the processor as memory locations. The address of theControl register is 4 bytes higher than
the address assigned to theData register. The core also contains two FIFOs that serve as storage buffers, one for
queueing up the data to be transmitted to the host and the other for queueing up the data received from the host.
Figure 2 gives the format of the registers.

Data

Control

Write

FIFO

Read

FIFO

Registers

JTAG UART Core

JTAG
interface

Avalon
switch
fabric

Host
computer

IRQ

Figure 1. A block diagram of the JTAG UART circuit

1

07151631

DATARVRAVAIL

07831

REWSPACE

(a) Data register

(b) Control register

16

RI WE

1910

WIAC

Figure 2. Registers in the JTAG UART

The fields in theData register are used as follows:

• b7−0 (DATA) is an 8-bit character to be placed into the Write FIFO when a Store operation is performed by
the processor, or it is a character read from the Read FIFO when a Load operation is performed.

• b15 (RVALID) indicates whether the DATA field contains a valid character that may be read by the processor.
This bit is set to 1 if the DATA field is valid; otherwise it is cleared to 0.

• b31−16 (RAVAIL) indicates the number of characters remaining in the Read FIFO (after this read).

The fields in theControl register are used as follows:

• b0 (RE) enables the read interrupts when set to 1.

• b1 (WE) enables the write interrupts when set to 1.

• b8 (RI) indicates that a read interrupt is pending if the value is 1. Reading theData register clears the bit to
0.

• b9 (WI) indicates that a write interrupt is pending if the valueis 1.

• b10 (AC) indicates that there has been JTAG activity (such as thehost computer polling the JTAG UART to
verify that a connection exists) since the bit was cleared. Writing a 1 to AC clears it to 0.

• b31−16 (WSPACE) indicates the number of spaces available in the Write FIFO.

More information on the JTAG UART may be found in Chapter 5 of theAltera Embedded Peripherals Handbook.

In this exercise, we will use the JTAG UART to transfer ASCII-encoded characters between a Nios II processor
implemented on the DE2 board and the host computer. We will also make use of an “interval timer” circuit to
provide fixed delays.

Part I

Use the SOPC Builder to create the system in Figure 3, which consists of a Nios II/e processor, a JTAG UART, a
memory block and an Interval Timer.

2

On-chip
memory

Avalon switch fabric

Nios II processor
JTAG UART

interface

USB-Blaster

interface

Host computer

Cyclone II

FPGA chip

Reset_n Clock

JTAG Debug

module

Interval
Timer

Figure 3. The desired Nios II system

Implement the system as follows:

1. Create a new Quartus II project. Select Cyclone II EP2C35F672C6 as the target chip, which is the FPGA
chip on the Altera DE2 board.

2. Use the SOPC Builder to create a system namednios system, which includes the following components:

• Nios II/s processor with JTAG Debug Module Level 1

• On-chip memory - RAM mode and 32 Kbytes in size

• JTAG UART - use the default settings

• Interval Timer - Located in the component section named Other

– For the Hardware Options - Preset Configurations chooseSimple periodic interrupt
– For the Timeout Period choose a Fixed Period of 500 msec

as shown in Figure 4.

3

Figure 4. Specification for the Interval Timer

3. From theSystem menu, selectAuto-Assign Base Addresses. You should now have the system shown
in Figure 5.

Figure 5. The Nios II system implemented by the SOPC Builder.

4. Generate the system, exit the SOPC Builder and return to the Quartus II software.

5. Instantiate the generated Nios II system within a Verilog/VHDL module.

6. Assign the pin connections:

4

• clk - PIN N2 (This is a 50 MHz clock)

• resetn - PIN G26 (This is the pushbutton switchKEY0)

7. Compile the Quartus II project.

8. Program and configure the Cyclone II FPGA on the DE2 Board toimplement the generated system.

Part II

The JTAG UART can send ASCII characters to the Altera Debug Client, which will display these characters
in its terminal window. When theWSPACE field in theControl register of the JTAG UART has a non-zero value
the JTAG UART can accept a new character to be written to the Altera Debug Client. To write a character to the
Debug Client, poll (continuously read) this register untilspace is available. Once space is available the ASCII
character can be written into theData register of the JTAG UART.

Write a Nios II assembly-language program to display the letter Z approximately every 500 ms in the terminal
window of the Altera Debug Client. Create and execute the program as follows:

1. Using the Nios II assembly language, write a loop which reads theControl register in the JTAG UART and
keeps looping until there is some write space available.

2. Write the letter Z to theData register.

3. Using the Altera Debug Client, compile and load the assembly-language program.

4. Run this program using the single step feature only. If yourun this program using theContinue mode, the
character will be sent to the terminal window faster than theDebug Client can handle.

5. In the assembly-language code, create a delay loop so thatcharacters are only printed approximately every
half second.

6. Recompile, load and run the program.

Part III

The JTAG UART can receive ASCII characters from the terminalwindow, as well as write them. The RVALID
bit, b15, in theData register indicates whether or not a value in the DATA field is avalid received ASCII character.
If more characters are still waiting to be read, the RAVAIL field will have a non-zero value.

Write a program that implements a “typewriter-like” task; that is, read each character that is received by the
JTAG UART from the host computer and then display this character in the terminal window of the Debug Client.
Use polling to determine if a new character is available fromthe JTAG UART.

Note: the cursor must be in the terminal window of the Debug Client to write characters to the JTAG UART’s
receive port.

Part IV

Polling the JTAG UART is inefficient, due to the overhead of reading its registers to determine the UART’s state.
The overhead of determining if a new character is available significantly impacts the performance of the program.
Instead of polling, it is possible to use the interrupt mechanism, which allows the processor to do useful work
while it is waiting for an I/O transfer to take place.

Create an interrupt-service routine to read characters recieved by the JTAG UART from the host computer.
Place the interrupt-service routine at the hex address 0x20, because this is the default location for theexception

5

handler as chosen by the SOPC Builder. The exception return address in theea register must be decremented by
4 for external interrupts. Figure 5 gives a skeleton of the interrupt-service routine written in the Nios II assembly
language.

.include “nios macros.s”

.text

.org 0x20 /* Place the interrupt service routine */
/* at the appropriate address */

ISR:
rdctl et, ctl4 /* Check if an external */
beq et, r0, SKIPEA DEC /* interrupt has occurred */

subi ea, ea, 4 /* If yes, decrement ea to execute */
/* interrupted instruction */

SKIP EA DEC:

... the interrupt-service routine

END ISR:
eret /* Return from exception */

.global start
start: /* Program start location */

... enable interrupts code

... the main program code

LOOP:
br LOOP /* Endless loop */

.end

Figure 6. Assembly language code skeleton for the interrupt-service routine.

Nios II’s control registerctl3, also referred to asienable, enables interrupts on an individual basis. Note that
when the system was created in Part I, the JTAG UART was placedat interrupt level 0. This means that bit0 of
the control registerctl3 must be set to 1 to enable the JTAG UART’s interrupts.

Perform the following:

1. Create an interrupt-service routine to read a character from the JTAG UART. Note that

• The interrupt service routine must be placed at the memory address 0x20.

• To enable interrupts, appropriate values must be written tothe Control register of the JTAG UART,
and the Nios II’s control registersctl0 andctl3.

6

2. In your interrupt service routine, use the polling approach to display the characters received from the host
computer in the terminal window of the Altera Debug Client.

3. Compile, load and run your program.

If your program does not work at a first try, you will have to debug it and fix the errors. One aid in debugging
is the single-step feature of the Altera Debug Client, whichallows the user to observe the flow of execution and the
contents of Nios II registers as each instruction is being executed. However, this approach cannot be used when
interrupts are involved, because interrupts are automatically disabled when single stepping through a program.
Therefore, use breakpoints as a debugging aid.

Note also that interrupts are automatically disabled when the execution of an interrupt-service routine begins
and re-enabled upon exit from this routine. This means that if some application required nested interrupts, the
interrupts would have to be re-enabled within the interrupt-service routine.

Part V

In this part we wish to write a program that uses interrupts toread characters received by the JTAG UART from
the host computer and displays the last character received repeatedly every 500 milliseconds. In Part II we used a
delay loop to generate an approximate time interval of this length. Now, we want to use the Interval Timer circuit
for this purpose. The Interval Timer should interrupt the processor every 500 ms at which point a character should
be written to the Debug Client’s terminal window.

The Interval Timer has an internal counter which is set to a specified value and then decremented in each clock
cycle. When the counter reaches 0, a “timeout” event is said to have occurred. At this point the Interval Timer
can raise an interrupt request and the counter can be reset tothe specified value. The Interval Timer has a set
of 16-bit registers that can be accessed as memory locations, similar to the JTAG UART. Two of these registers,
Status andControl, are shown in Figure 7. The address of theStatus register is the base address assigned to the
Interval Timer, while the address of theControl register is 4 bytes higher.

01215

TORUN

02315

ITO

(a) Status register

(b) Control register

START CONT

14

STOP

Figure 7. Registers in the Interval Timer

The bits in theStatus register are used as follows:

• b0 (TO) is the timeout bit. It is set to 1 when the internal counter in the Interval Timer reaches 0. It remains
set until explicitly cleared by the processor writing a 0 to it.

• b1 (RUN) is equal to 1 when the internal counter is running; otherwise, it is equal to 0. This bit is not
changed by a write operation to theStatus register.

7

The bits in theControl register are used as follows:

• b0 (ITO) enables the Interval Timer interrupts when set to 1.

• b1 (CONT) determines how the internal counter behaves when it reaches 0. If CONT = 1, the counter runs
continuously by reloading the specified initial count value; otherwise, it stops when it reaches 0.

• b2 (START) causes the internal counter to start running when set to 1 by a write operation.

• b3 (STOP) stops the internal counter when set to 1 by a write operation.

More information on the Interval Timer may be found in chapter 12 of theAltera Embedded Peripherals Hand-
book.

To enable both interrupts, from the Interval Timer and the JTAG UART for reading characters (from Part IV),
the bitsb1 andb0 of the control registerctl3 must both be set to 1. As seen in Figure 5, the JTAG UART is on
interrupt line 0 (orb0) and the Interval Timer is on interrupt line 1 (orb1). The control registerctl4, also referred
to asipending, can be used to determine which interrupt has occurred. If aninterrupt is disabled using the control
registerctl3, it will not cause the interrupt-service routine to execute, nor will it show as being triggered in the
control registerctl4, even if the device is driving its interrupt-request line to1.

Perform the following steps:

1. Modify the program from Part IV, so that the main program enables interrupts and then waits in an infinite
loop.

2. Modify the interrupt-service routine to handle both the Interval Timer and the JTAG UART’s read interrupts.

3. To enable interrupts, appropriate values must be writtento theControl register of the JTAG UART, the
Control register of the Interval Timer and the Nios II control registersctl0 andctl3.

4. Compile, load and run your program.

Copyright c©2006 Altera Corporation.

8

