Laboratory Exercise 1
A Simple Computer System

The purpose of this exercise is to learn how to create and sga@e computer system. The system will
consist of an Altera Nios Il processor and an applicatiorgpam. We will use the Quartus Il and SOPC Builder
software to generate the hardware portion of the system. Wase theAltera Debug Client software to compile,
load and run the application program.

Part |

In this exercise, you will use the SOPC Builder to create §fstesn in Figure 1, which consists of a Nios Il/e

processor and a memory block. The Nios ll/e processor psesafata. The memory block stores instructions and
data.

™ pltera SOPC Builder - nios_system E]@

File Module System ‘Wiew Tools Help

| System Contents | Nips I Mare "cpu_0" Settings | Systen Generation|

| £ atters SOPC Buider ~ ! -

Bl Create Mew Companent.. . Clack Source MHz

1--Avalon Components Board: :Ll_n_specified Board £ lek iExternaI 150.0
+- @ Mios Il Processor - Aft [| | |
Bridges Device Family: | Cyclone [T v |

: ‘Communication

. E-DSP - o il

Lo Display Use Module Mame Description Input Clock Base End IRQJ

[#--EP1C20 Hios Developn | Eepu_d Miog Il Processor - Altera Corpo. . |clk |

- EP1S10 Hios Developr instruction_master Master port |

| [-EP1540 Hios Developm 3 data_master Master port | IR0 IR@ 31| ¢
| (E 3 . jtag_debug_module Slave port | 0x00008000) 0x0000G7FF
= — onchip_memonry 0 |On-Chip Memory (RAM or ROM) |clk | 0x00000000 DxDDDDTFFF‘
[FRb AT b s e e
E SR AR

@ Check . Move Up I [¥ Move Down]

\[7] cpu_0 was generated as plain-text HOL,
cpu_0: The reset address points to volatile memaory, Execution of undefined code may occur upon reset.
\[T) Done checking For updates,

Exit Fr [Mext =] [GEMEFate]

Figure 1. The Nios Il system in SOPC Builder.

Implement the system in Figure 1 as follows:

1. Create a new Quartus Il project. Select Cyclone Il EP2@332E6 as the target chip, which is the FPGA
chip on the Altera DE2 board.

2. Use the SOPC Builder to create a system nameglsystem, which includes the following components:

¢ Nios ll/e processor with JTAG Debug Module Level 1
e On-chip memory - RAM mode and 32 Kbytes in size with width oft8

3. From theSystem menu, selecAuto-Assign Base Addresses. You should now have the system shown
in Figure 1.

4. Generate the system, exit the SOPC Builder and returret@ttartus Il software.

5. Instantiate the generated Nios Il system within a Vefé¢pDL module.
6. Assign the pin connections:

e clk - PIN_LN2 (This is a 50 MHz clock)
e resetn - PIN.G26 (This is the pushbutton swit&EY,)
7. Compile the Quartus Il project.

8. Program and configure the Cyclone Il FPGA on the DE2 Boanthjdement the generated system. To use
the system, we have to give the processor a program to ex&duitsh will we do in Part Il of this exercise.

Part |1

In a digital computer all data is represented as strings adris0s. The Nios Il assembly-language program
in Figure 2 examines a word of data and determines the maximumber of consecutive 1s in that word. For
example, the word 0x937a (1001001101111010) has a maxiniuhtonsecutive 1s. The code in the figure
calculates the number of consecutive 1s for the data Ox@@tibc

.include “nios_macros.s”

text
.equ TEST.NUM, 0x90abcdef /* The number to be tested */

.global _start
_start:

movia r7, TEST.NUM /* Initialize r7 with the number to be tested */
mov rd, r7 /* Copy the number to4 */

STRING.COUNTER:
mov r2, ro [* Initialize the counter to zero */

STRING.COUNTERLOOP: /* Loop until the number has no more ones */
beq r4, r0, END.STRING.COUNTER

srli r5,r4, 1 [* Calculate the number for ones by shifting the */
and rd, r4, r5 /* number by 1 and anding the result with itself. */
addi r2,r2, 1 /* Increment the counter. */

br STRING.COUNTERLOOP

END_STRING.COUNTER:

mov rle, r2 [* Store the result intol6 */
END:

br END [* Wait here once the program has completed */
.end

Figure 2. Assembly-language code that counts consecui®®. 0

Assemble and execute the program in Figure 2 as follows:

1. Openthe Altera Debug Client and configure it to use theesysteated in Part | and the application program
in Figure 2.

2. Compile and load the program.

3. Single step through the program. Watch how the instrostthange the data in the processor’s registers.
Notice that when the end of the program has been reachedjlaggs is in the register16.

4. Set the Program Counter to 0x00000008. This will allowousxecute the program again (in step 6 below),
while skipping the first two instructions.

5. This time add a breakpoint at address 0x28, so that thegrogill automatically stop executing at the end
of the program.

6. Set register7 to Oxabcdef90. How many consecutive 1s are there in this euMRerun the program by
pressing F3 (Continue) to see if you are correct.

Part 111

Instructions are also represented as strings of 1s andrigaisto data. In this part, we will examine how in-
structions are formed.

Perform the following:

1. Reload your program (by selecting ActionsLoad) to remove the memory edits done in Part Il. Then,
execute the program once, stopping at the end.

2. Use theNios Il Processor Reference Handbook, which is available on Altera’s website, to determine the
machine instruction representation of the following adsignanguage instructionsand r3, r7, r16 and
srar’, r7,r3.

3. Use the Altera Debug Client’s memory-fill functionalityplace these two instructions at memory locations
0 and 4. We should note that you will not see these update@satuthe disassembly view of the Debug
Client.

4. Set the Program Counter to 0x00000000. What will happisrtithe? To verify your answer, single step
the instructions you placed at addresses 0 and 4 (to seeffemit) and then execute the rest of the program.

5. Using the memory-fill feature change the last branchuesion to point to the start of the program instead
of to itself. This will eliminate the need to manually edietRrogram Counter.

6. Rerun the program until the number of 1s and the data bestgd remain constant.

7. Now repeat steps 1 to 6, but use the instrucsidn?, r7, r3 instead okra r7, r7, r3. What is the difference?

Part 1V

In most application programs there are portions of the cbdé will be executed multiple times from various
locations inside a program. Such portions of code can b&eghih the form of subroutines. A subroutine can be
run from anywhere in the program by usingall instruction. The program execution returns to the call fioca
after the subroutine has finished executing, if the subneutinds with aet instruction. We will now create a
subroutine to calculate the number of consecutive 1s, amdt ts calculate the number of consecutive 1s and the
number of consecutive 0s in a given data word.

Start with the program for Part 1l and edit it as follows:

1. Take the code which calculates the number of consecusvanti make it into a subroutine. Have the
subroutine use registed to receive the input data and regist2ifor outputting the result.

2. Callthe newly created subroutine twice, once to caleutss number of consecutive 1s and once to calculate
the number of consecutive 0s. To calculate the number ofezutise Os the input data must be inverted
before running the subroutine.

3. Write the number of consecutive 1s into registés and the number of consecutive Os into regisiét

PartV

One might be interested in the longest string of alterndtsgnd 0s. For example, the binary number 101101010001
has a string of 6 alternating 1s and Os, as highlighted h&&t01.010001. Use the subroutine created in Part IV

to count the number of consecutive bits of alternating 1sGmdNrite the result to registet8. Assume that the

two end bits can be part of the longest string. For exampl&Q s 4 consecutive bits of alternating 1s and Os.
(Hint: What happens when the number is shifted to the rightfbby 1 and XORed with the original number.)

Part VI
Perform the previous parts of this exercise using the C piogring language. Create a function caltednt_ones,
which counts the number of consecutive 1s. Search throughlidassembled code to find both timain and

count_ones subroutines. Did you write your assembly code in a similagy®v&/hat registers did the compiler use
and why?

Copyright(©2006 Altera Corporation.

