Laboratory Exercise 4

Polling and Interrupts

The purpose of this exercise is to learn how to send and redkita to/from 1/0O devices. There are two
methods used to indicate whether or not data can be senteady to be received to/from 1/O devices. The first
method polling, is where the processor queries devices to see if they caiveetata or have data available. The
second methodnterrupts, is when devices indicate to the processor that they cariveedata or that they have
data available, without the processor explicitly requresti

A simple and commonly used scheme for transferring datadmmtva processor and an I/O device is known
as theUniversal Asynchronous Receiver Transmitter (UART). A UART interface (circuit) is placed between the
processor and the I/O device. It handles data one 8-bit ctearat a time. The transfer of data between the UART
and the processor is done in parallel fashion, where alldfitscharacter are transferred at the same time using
separate wires. However, the transfer of data between tHeTUs#d the 1/O device is done in bit-serial fashion,
transferring the bits one at a time.

Altera’s SOPC Builder can implement an interface of the UAtgpe for use in Nios Il systems, which is
called the JTAG UART. This circuit can be used to provide anamtion between a Nios Il processor and the
host computer connected to Altera’'s DE2 board. Figure 1 shawlock diagram of the JTAG UART circuit.
On one side the JTAG UART connects to the Avalon switch falwigile on the other side it connects the host
computer via the USB-Blaster interface. The JTAG UART caretains two registerdData andControl, which
are accessed by the processor as memory locations. ThesaddréheControl register is 4 bytes higher than
the address assigned to thata register. The core also contains two FIFOs that serve aagadiuffers, one for
queueing up the data to be transmitted to the host and the fothgueueing up the data received from the host.
Figure 2 gives the format of the registers.

JTAG UART Core

-~ Registers Write
Avalon FIFO
switch JTAG Host

fabric Data interface computer
IRQ
Control Read
FIFO

Figure 1. A block diagram of the JTAG UART circuit

31 16 15 7 0

RAVAIL RV DATA

(a) Data register

31 16 10 9 8 7 1 0

WSPACE AC|WI| RI WE|RE

(b) Control register

Figure 2. Registers in the JTAG UART

The fields in theData register are used as follows:

e b;_o (DATA) is an 8-bit character to be placed into the Write FIFGem a Store operation is performed by
the processor, or itis a character read from the Read FIF® whead operation is performed.

¢ 115 (RVALID) indicates whether the DATA field contains a validartacter that may be read by the processor.
This bit is set to 1 if the DATA field is valid; otherwise it isedred to 0.

e 13116 (RAVAIL) indicates the number of characters remaining ia Bead FIFO (after this read).

The fields in theControl register are used as follows:

by (RE) enables the read interrupts when set to 1.

b1 (WE) enables the write interrupts when set to 1.

bs (RI) indicates that a read interrupt is pending if the vakig.iReading th®ata register clears the bit to
0.

bg (WI) indicates that a write interrupt is pending if the valad.

b1o (AC) indicates that there has been JTAG activity (such astist computer polling the JTAG UART to
verify that a connection exists) since the bit was clearedtig a 1 to AC clears it to 0.

e 131165 (WSPACE) indicates the number of spaces available in théaiitFO.
More information on the JTAG UART may be found in Chapter StafAltera Embedded Peripherals Handbook.

In this exercise, we will use the JTAG UART to transfer AS@Heoded characters between a Nios Il processor
implemented on the DE2 board and the host computer. We \gitl alake use of an “interval timer” circuit to
provide fixed delays.

Part |

Use the SOPC Builder to create the system in Figure 3, whiokists of a Nios Il/e processor, a JTAG UART, a
memory block and an Interval Timer.

Host computer

USB-Blaster

Reset_n Clock interface
Cyclone II
JTAG Deb JTAG UART :
Nios II processor M : FPGA chip
module interface
Avalon switch fabric
On-chip Interval
memory Timer

Implement the system as follows:

Figure 3. The desired Nios Il system

1. Create a new Quartus Il project. Select Cyclone Il EP2@332E6 as the target chip, which is the FPGA
chip on the Altera DE2 board.

2. Use the SOPC Builder to create a system namegisystem, which includes the following components:

Nios Il/s processor with JTAG Debug Module Level 1
On-chip memory - RAM mode and 32 Kbytes in size
JTAG UART - use the default settings

e Interval Timer - Located in the component section named Othe

— For the Hardware Options - Preset Configurations ch&isgle periodic interrupt
— For the Timeout Period choose a Fixed Period of 500 msec

as shown in Figure 4.

'™ Avalon Timer - timer_0 @

Timeout Period

Fixed Period: 500

Input Clock Freguency: 50 MHz

Hardware Options

Preset Configurations: |Simple periodic interrupt w |

Registers

[] writable period

[[] Readable snapshat
O

Cutput Signals
[Timeaut pulse {1 clock wide)

[] Swstem resst on timeout {(Watchdag)

Cancel Finish

Figure 4. Specification for the Interval Timer

3. From theSystem menu, selecAuto-Assign Base Addresses. You should now have the system shown
in Figure 5.

1™ Altera SOPC Builder - nios_system E]@

File Module Swstem VYiew Tools Help

System Contents | Nios IT More "rpu_0" Settings | System Generation |

) Attera SOPC Buiider » Tt .
Create Mewy Componert.. L | Clock Source MHz
Avalon Components Board: | Unspecified Board ‘;l |External |s0.0
Mioz Il Processar - Al = |
ridges Device Family: :Cyclona |
ommunication
5P - —
isplay | Use Module Mame Description Input Clock Base Encl IRG
P1C20 Hiog Developn Hepud Mioz | Processor - Atera Corpo... |clk
EP1510 Hins Developn instruction_master haster port
P1540 Hios Developn data_tnaster hiaster port IR@ 0 IR 31
PZ0K200E Hios Develc v Jtag_debug_module Slave part 0x00008000| 0xDOD0STFF)
[o onchip_memory 0 On-Chip Memary (RAM or ROM) [clk 0x00000000, 0x00007FFF
= | jtag_uart_0 UTAG UART clk 0x00005827|] 0
T timer_0 Irteryal ti_mer l‘dk 0x00008300, 0x0000SE1F I 1
&] @ Check & Move Lp] [w Move Down]

(i1 cpu_0: defaulting Reset Address, Exception Address to onchip_memory_0
cpu_0: The reset address points to volatile memory, Execution of undefined code may occur upon reset.

(%) Done checking for updates.
Exit < Prev [Next = I [Generate J

Figure 5. The Nios Il system implemented by the SOPC Builder.

4. Generate the system, exit the SOPC Builder and returret@ttartus Il software.
5. Instantiate the generated Nios Il system within a Vefd¢pDL module.

6. Assign the pin connections:

e clk - PINLN2 (This is a 50 MHz clock)
e resetn - PIN.G26 (This is the pushbutton swit&EY,)

7. Compile the Quartus Il project.

8. Program and configure the Cyclone Il FPGA on the DE2 Boaneshpdement the generated system.

Part Il

The JTAG UART can send ASCII characters to the Altera DebugnEl which will display these characters
in its terminal window. When th&/SPACE field in theControl register of the JTAG UART has a non-zero value
the JTAG UART can accept a new character to be written to therd&Debug Client. To write a character to the
Debug Client, poll (continuously read) this register usplce is available. Once space is available the ASCII
character can be written into tiata register of the JTAG UART.

Write a Nios Il assembly-language program to display thetet approximately every 500 ms in the terminal
window of the Altera Debug Client. Create and execute thgiznm as follows:

1. Using the Nios Il assembly language, write a loop whiclisgheControl register in the JTAG UART and
keeps looping until there is some write space available.

2. Write the letter Z to th®ata register.
3. Using the Altera Debug Client, compile and load the as$gfalnguage program.

4. Run this program using the single step feature only. Ifjouthis program using th€ontinue mode, the
character will be sent to the terminal window faster thanRibug Client can handle.

5. In the assembly-language code, create a delay loop sohhedcters are only printed approximately every
half second.

6. Recompile, load and run the program.

Part 11l

The JTAG UART can receive ASCII characters from the termimialdow, as well as write them. The RVALID
bit, b15, in theData register indicates whether or not a value in the DATA field v&akd received ASCII character.
If more characters are still waiting to be read, the RAVAIUdiwill have a non-zero value.

Write a program that implements a “typewriter-like” taskat is, read each character that is received by the
JTAG UART from the host computer and then display this chirain the terminal window of the Debug Client.
Use polling to determine if a new character is available ftbenJTAG UART.

Note: the cursor must be in the terminal window of the Debugr€lto write characters to the JTAG UART's
receive port.

Part IV

Polling the JTAG UART is inefficient, due to the overhead adimg its registers to determine the UART’s state.
The overhead of determining if a new character is availaglgfecantly impacts the performance of the program.
Instead of polling, it is possible to use the interrupt mexsm, which allows the processor to do useful work
while it is waiting for an I/O transfer to take place.

Create an interrupt-service routine to read characteisved by the JTAG UART from the host computer.
Place the interrupt-service routine at the hex address,(b&tause this is the default location for #xeeption

handler as chosen by the SOPC Builder. The exception return addrakséa register must be decremented by
4 for external interrupts. Figure 5 gives a skeleton of theript-service routine written in the Nios Il assembly

language.

.include “nios_macros.s”

text
.org 0x20 /* Place the interrupt service routine */
[* at the appropriate address */
ISR:
rdctl et, ctl4 /* Check if an external */

beq et, r0, SKIREA_DEC /* interrupt has occurred */

subi ea, ea, 4 /* If yes, decrement ea to execute */
/* interrupted instruction */

SKIP_EA_DEC:

... the interrupt-service routine

END_ISR:

eret /* Return from exception */
.global _start
_Start: /* Program start location */

... enable interrupts code
... the main program code

LOOP:
br LOOP /* Endless loop */

.end

Figure 6. Assembly language code skeleton for the intersaptice routine.

Nios IlI's control registerctl3, also referred to agenable, enables interrupts on an individual basis. Note that
when the system was created in Part |, the JTAG UART was plataderrupt level 0. This means that Bibf
the control registectl3 must be set to 1 to enable the JTAG UART's interrupts.

Perform the following:

1. Create an interrupt-service routine to read a charaaer the JTAG UART. Note that

e The interrupt service routine must be placed at the memaiyesd 0x20.

e To enable interrupts, appropriate values must be writtethedControl register of the JTAG UART,
and the Nios II's control registecsl0 andctl 3.

2. In your interrupt service routine, use the polling appfoto display the characters received from the host
computer in the terminal window of the Altera Debug Client.

3. Compile, load and run your program.

If your program does not work at a first try, you will have to dght and fix the errors. One aid in debugging
is the single-step feature of the Altera Debug Client, whilbbws the user to observe the flow of execution and the
contents of Nios Il registers as each instruction is beiregated. However, this approach cannot be used when
interrupts are involved, because interrupts are autoaltidisabled when single stepping through a program.
Therefore, use breakpoints as a debugging aid.

Note also that interrupts are automatically disabled whereikecution of an interrupt-service routine begins
and re-enabled upon exit from this routine. This means fretrne application required nested interrupts, the
interrupts would have to be re-enabled within the intersgrvice routine.

PartVv

In this part we wish to write a program that uses interruptseta characters received by the JTAG UART from
the host computer and displays the last character recedpahtedly every 500 milliseconds. In Part Il we used a
delay loop to generate an approximate time interval of #mgth. Now, we want to use the Interval Timer circuit
for this purpose. The Interval Timer should interrupt theqassor every 500 ms at which point a character should
be written to the Debug Client’s terminal window.

The Interval Timer has an internal counter which is set toezsjed value and then decremented in each clock
cycle. When the counter reaches 0, a “timeout” event is galtht’e occurred. At this point the Interval Timer
can raise an interrupt request and the counter can be rettet 8pecified value. The Interval Timer has a set
of 16-bit registers that can be accessed as memory locatongar to the JTAG UART. Two of these registers,
Satus andControl, are shown in Figure 7. The address of Si&us register is the base address assigned to the
Interval Timer, while the address of tiantrol register is 4 bytes higher.

15 2 1 0

RUN TO

(a) Status register

15 4 3 2 1 0

STOP [START| CONT | ITO

(b) Control register

Figure 7. Registers in the Interval Timer

The bits in theStatusregister are used as follows:

e by (TO) is the timeout bit. It is set to 1 when the internal couimehe Interval Timer reaches 0. It remains
set until explicitly cleared by the processor writing a Otto i

e b; (RUN) is equal to 1 when the internal counter is running; ohee, it is equal to 0. This bit is not
changed by a write operation to tB&tusregister.

The bits in theControl register are used as follows:
e by (ITO) enables the Interval Timer interrupts when set to 1.

e b; (CONT) determines how the internal counter behaves wheraitres 0. If CONT = 1, the counter runs
continuously by reloading the specified initial count valoinerwise, it stops when it reaches 0.

e by (START) causes the internal counter to start running whetoskby a write operation.
e b3 (STOP) stops the internal counter when set to 1 by a writeatioer.

More information on the Interval Timer may be found in chagt2 of theAltera Embedded Peripherals Hand-
book.

To enable both interrupts, from the Interval Timer and thf@TART for reading characters (from Part 1V),
the bitsb; andbg of the control registectl3 must both be setto 1. As seen in Figure 5, the JTAG UART is on
interrupt line 0 (o) and the Interval Timer is on interrupt line 1 (br). The control registectl4, also referred
to asipending, can be used to determine which interrupt has occurred. ititarrupt is disabled using the control
registerctl3, it will not cause the interrupt-service routine to executer will it show as being triggered in the
control registertl4, even if the device is driving its interrupt-request linelto

Perform the following steps:

1. Modify the program from Part 1V, so that the main prograraldas interrupts and then waits in an infinite
loop.

2. Modify the interrupt-service routine to handle both thietval Timer and the JTAG UART's read interrupts.

3. To enable interrupts, appropriate values must be writtetime Control register of the JTAG UART, the
Control register of the Interval Timer and the Nios Il control regrsictlO andctl3.

4. Compile, load and run your program.

Copyright(©2006 Altera Corporation.

