
Laboratory Exercise 1
A Simple Computer System

The purpose of this exercise is to learn how to create and use asimple computer system. The system will
consist of an Altera Nios II processor and an application program. We will use the Quartus II and SOPC Builder
software to generate the hardware portion of the system. We will use theAltera Debug Client software to compile,
load and run the application program.

Part I

In this exercise, you will use the SOPC Builder to create the system in Figure 1, which consists of a Nios II/e
processor and a memory block. The Nios II/e processor processes data. The memory block stores instructions and
data.

Figure 1. The Nios II system in SOPC Builder.

Implement the system in Figure 1 as follows:

1. Create a new Quartus II project. Select Cyclone II EP2C35F672C6 as the target chip, which is the FPGA
chip on the Altera DE2 board.

2. Use the SOPC Builder to create a system namednios system, which includes the following components:

• Nios II/e processor with JTAG Debug Module Level 1

• On-chip memory - RAM mode and 32 Kbytes in size with width of 32bits

3. From theSystem menu, selectAuto-Assign Base Addresses. You should now have the system shown
in Figure 1.

4. Generate the system, exit the SOPC Builder and return to the Quartus II software.

1



5. Instantiate the generated Nios II system within a Verilog/VHDL module.

6. Assign the pin connections:

• clk - PIN N2 (This is a 50 MHz clock)

• resetn - PIN G26 (This is the pushbutton switchKEY0)

7. Compile the Quartus II project.

8. Program and configure the Cyclone II FPGA on the DE2 Board toimplement the generated system. To use
the system, we have to give the processor a program to execute, which will we do in Part II of this exercise.

Part II

In a digital computer all data is represented as strings of 1sand 0s. The Nios II assembly-language program
in Figure 2 examines a word of data and determines the maximumnumber of consecutive 1s in that word. For
example, the word 0x937a (1001001101111010) has a maximum of 4 consecutive 1s. The code in the figure
calculates the number of consecutive 1s for the data 0x90abcedf.

.include “nios macros.s”

.text

.equ TEST NUM, 0x90abcdef /* The number to be tested */

.global start
start:

movia r7, TESTNUM /* Initialize r7 with the number to be tested */
mov r4, r7 /* Copy the number tor4 */

STRING COUNTER:
mov r2, r0 /* Initialize the counter to zero */

STRING COUNTERLOOP: /* Loop until the number has no more ones */
beq r4, r0, ENDSTRING COUNTER

srli r5, r4, 1 /* Calculate the number for ones by shifting the */
and r4, r4, r5 /* number by 1 and anding the result with itself. */
addi r2, r2, 1 /* Increment the counter. */
br STRING COUNTERLOOP

END STRING COUNTER:
mov r16, r2 /* Store the result intor16 */

END:
br END /* Wait here once the program has completed */

.end

Figure 2. Assembly-language code that counts consecutive ones.

Assemble and execute the program in Figure 2 as follows:

1. Open the Altera Debug Client and configure it to use the system created in Part I and the application program
in Figure 2.

2



2. Compile and load the program.

3. Single step through the program. Watch how the instructions change the data in the processor’s registers.
Notice that when the end of the program has been reached, a result of 4 is in the registerr16.

4. Set the Program Counter to 0x00000008. This will allow us to execute the program again (in step 6 below),
while skipping the first two instructions.

5. This time add a breakpoint at address 0x28, so that the program will automatically stop executing at the end
of the program.

6. Set registerr7 to 0xabcdef90. How many consecutive 1s are there in this number? Rerun the program by
pressing F3 (Continue) to see if you are correct.

Part III

Instructions are also represented as strings of 1s and 0s, similar to data. In this part, we will examine how in-
structions are formed.

Perform the following:

1. Reload your program (by selecting Actions> Load) to remove the memory edits done in Part II. Then,
execute the program once, stopping at the end.

2. Use theNios II Processor Reference Handbook, which is available on Altera’s website, to determine the
machine instruction representation of the following assembly language instructions:and r3, r7, r16 and
sra r7, r7, r3.

3. Use the Altera Debug Client’s memory-fill functionality to place these two instructions at memory locations
0 and 4. We should note that you will not see these updated values in the disassembly view of the Debug
Client.

4. Set the Program Counter to 0x00000000. What will happen this time? To verify your answer, single step
the instructions you placed at addresses 0 and 4 (to see theireffect) and then execute the rest of the program.

5. Using the memory-fill feature change the last branch instruction to point to the start of the program instead
of to itself. This will eliminate the need to manually edit the Program Counter.

6. Rerun the program until the number of 1s and the data being tested remain constant.

7. Now repeat steps 1 to 6, but use the instructionsrl r7, r7, r3 instead ofsra r7, r7, r3. What is the difference?

Part IV

In most application programs there are portions of the code that will be executed multiple times from various
locations inside a program. Such portions of code can be realized in the form of subroutines. A subroutine can be
run from anywhere in the program by using acall instruction. The program execution returns to the call location
after the subroutine has finished executing, if the subroutine ends with aret instruction. We will now create a
subroutine to calculate the number of consecutive 1s, and use it to calculate the number of consecutive 1s and the
number of consecutive 0s in a given data word.

Start with the program for Part II and edit it as follows:

1. Take the code which calculates the number of consecutive 1s and make it into a subroutine. Have the
subroutine use registerr4 to receive the input data and registerr2 for outputting the result.

3



2. Call the newly created subroutine twice, once to calculate the number of consecutive 1s and once to calculate
the number of consecutive 0s. To calculate the number of consecutive 0s the input data must be inverted
before running the subroutine.

3. Write the number of consecutive 1s into registerr16 and the number of consecutive 0s into registerr17.

Part V

One might be interested in the longest string of alternating1s and 0s. For example, the binary number 101101010001
has a string of 6 alternating 1s and 0s, as highlighted here: 101101010001. Use the subroutine created in Part IV
to count the number of consecutive bits of alternating 1s and0s. Write the result to registerr18. Assume that the
two end bits can be part of the longest string. For example, 1010 has 4 consecutive bits of alternating 1s and 0s.
(Hint: What happens when the number is shifted to the right orleft by 1 and XORed with the original number.)

Part VI

Perform the previous parts of this exercise using the C programming language. Create a function calledcount ones,
which counts the number of consecutive 1s. Search through the disassembled code to find both themain and
count ones subroutines. Did you write your assembly code in a similar way? What registers did the compiler use
and why?

Copyright c©2006 Altera Corporation.

4


