Laboratory Exercise 2

Program-Controlled Input/Output

The purpose of this exercise is to investigate the use otdswvthat provide input and output capabilities for
a processor, and are controlled by software. We will exarttiaee program-controlled 1/0 operations from both
the hardware and software points of view. We will make usearhltel interfacesPIOs in a Nios Il system
implemented on an Altera DE2 board. The background knoveedmeded to do this exercise can be acquired
from the tutorialsintroduction to the Altera Nios Il Soft ProcessandIntroduction to the Altera SOPC Builder
which can be found in the University Program section of theerd web site.

The PIO interface used in this exercise, which is a compdhantan be generated by using the SOPC Builder,
provides for data transfer in either input or output (or Batinections. The transfer is done in parallel and it may
involve from 1 to 32 bits. The number of bits, and the direction of transfer are specified by the user tiirou
Altera’s SOPC Builder. The PIO interface can contain the fegisters shown in Figure 1.

Address offset

(in bytes) (n-1) 0

0 Input/Output data
(a) Data register
4 Direction control for each input/output line
(b) Direction register
8 Interrupt enable/disable control for each input line
(c) Interrupt-mask register

12 Edge detection for each input line

(d) Edge-capture register

Figure 1. The registers in the P10 interface.

Each register is bits long. The registers have the following purpose:

e Dataregister holds the bits of data that are transferred between the PIO interfadétee Nios Il processor.
It can be implemented as an input, output, or a bidirecticegibter by the SOPC Builder.

e Directionregister defines the direction of the transfer for each ofitiata bits when a bidirectional interface
is generated.

e Interrupt-maskegister is used to enable interrupts from the input linemeated to the PIO.

e Edge-capturaegister indicates when a change of logic value is detectaba signals on the input lines
connected to the PIO.

Not all of these registers are generated in a given PIO exterf For example, thBirection register is included
only when a bidirectional interface is specified.

The PIO registers are accessible as if they were memoryidmsatAny base address that has the four least-
significant bits equal to 0 can be assigned to a PIO (this malobe automatically by the SOPC Builder). This
becomes the address of tBata register. The addresses of the other three registers hésat0bf 4, 8, or 12
bytes (1, 2, or 3 words). A full description of the PIO moduade found in the documeRtO Core with Avalon
Interface which is available in the literature section of Altera’siwste.

The application task in this exercise consists of addingtiogr a set of signed 8-bit numbers that are entered
via the toggle switches on Altera’s DE2 board. The resulnm is displayed on the LEDs and 7-segment dis-

plays.

Part |

Use 8 toggle switchesSW_, as inputs for entering numbers. Use the green liglEDG;_(, to display the
number defined by the toggle switches. Use the 16 red ligEBR, 5, to display the accumulated sum. A Nios
Il system, which includes three PIO interfaces, is the haréwmeeded for our task. One PIO circuit, connected
to the toggle switches, will provide the input data that candad by the processor. Two other PIO circuits, con-
nected to the green and red lights, will serve as the outpeitfates to allow displaying the number selected by
the switches and the accumulated sum, respectively.

Realize the required hardware by implementing a Nios llesysbn the DE2 board, as follows:

1. Create a new Quartus Il project. Select Cyclone Il EP2@332E6 as the target chip, which is the FPGA
chip on the Altera DE2 board.

2. Use the SOPC Builder to generate the desired circuie@albs systemwhich comprises:

e Nios lI/s processor with JTAG Debug Module Level 1; seleetfibilowing options:

— Embedded Multipliers for Hardware Multiply
— Hardware Divide

e On-chip memory - RAM mode and 32 Kbytes in size
e An 8-bit PIO input circuit
e An 8-bit PIO output circuit
e A 16-bit PIO output circuit
The SOPC Builder will automatically assign the names suchia®), pio_1 and pio_2 to the three PIO

components. You can change these names to something thatésimeaningful in the context of a specific
design. For example, we can choose the name@snumber greenLEDsandred LEDs

3. From theSystem menu, selecAuto-Assign Base Addresses. This will assign addresses to all compo-
nents in the designed system. The result will be a systemasithe one shown in Figure 2. Observe the
assigned addresses.

4. Instantiate the generatabs systemwithin a Verilog/VHDL file, which also defines the requiredmeeec-
tions to the switches and LEDs on the DE2 board.

5. Assign the pins needed to make the necessary connedtioimsporting the pin-assignment file
DEZ2 pin_assignmentssv

6. Compile the Quartus Il project.

7. Program and configure the Cyclone || FPGA on the DE2 Boanshptement the generated system.

1% Altera SOPC Builder - nios_system

File Module System Yiew Tools Help
System Contents | Njos I More "cpu_0" Settings | System Generation |
| Kl Atera SOPC Builder Al - Target i
| kol Create Mew Componert, — S . | Clock Source h
Avalon Components Board: EQQ§peciFied Board w ek |External is[
b Mioz || Processor - A < |chick ba sdd. |
ridges Device Family: ;_Cyclone I 8| {ardiCopy Compatibl I
‘Communication
JTAG UART = — =
SPI (3 Wire Seria | Use Module Mame . .Descrlptlon Input Clock Base Enicd IRG
@ LART (RS-232 @ Elcpu_ '@ Nios Il Processor - &, ok |
O 165505 Enhance instruction_master |Master port 1
O CAaM 20 Metwork data_master IMaster part IR O IR 31| ¢
O DM1E550 UART w jtag_debug_module |Skave port 0x00008000| 0x0000E7FF
O DIZCM 12C Bus I onchip_memory_0 |On-Chip Memory (Ram . \clk 0x00007FFF|
O DIZCSE 12C Bus | new_number IPIO (Parallel 110 clk 0x00008500 DxDDDDSSDFl
| L b DEPI Serisl Periph v green_LEDs !PIO (Parallel 110 clk 0x00008810, 0:x0000551F|
i W red_LEDs 1 arallel cl 20/ D |
'< 3 [¥] d_LED: IPID (Paraliel 1107 lk: 0x0000552F
| | |
[Aod.o] [@ Fheds] [& Mave Up] [w Mave Down
_ID cpu_0: defaulting Reset Address, Exception Address ko onchip_memory_0
cpu_0: The reset address points to volatils memary. Execution of undefined code may occur upan reset,
=
\[7) Dane checking for updates.
Exit [Mext =] [Generate]

Figure . The Nios Il system implemented by the SOPC Builder.

Part Il

Implement the desired task using the Nios Il assembly lagguas follows:

1. Write a program that reads the contents of the switchsglalis the corresponding value on the green LEDs,
adds this number to a sum that is being accumulated, andiglssiiie sum on the red LEDs.

2. Use theAltera Debug Cliensoftware to assemble and download your program.

3. Single-step through the program and verify its correxsr®y inputting several numbers. Note that single-
stepping through the program will allow you change the inpuwinbers without reading the same number
multiple times.

Part 11l

In this part, we want to add the ability to run the applicatmogram continuously and control the reading of
new numbers by including a pushbutton switch which is atgtdoy the user when a new number is ready to be
read. The desired operation is that the user provides thenmexber by setting the toggle switches accordingly
and then pressing a pushbutton switch to indicate that thebeuis ready for reading.

To accomplish this task it is necessary to implement a mashethat monitors the status of the circuit used to
input the numbers. A commonly-used I/O scheme is to ustatas flagvhich is originally cleared to 0. This flag

is then set to 1 as soon as the I/O device interface is readhdéanext data transfer. Upon transferring the data,
the flag is again cleared to 0. Thus, the processompcdirthe status flag to determine when an I/O data transfer
can be made.

In our case, the I/O device is the user who manually sets tiggeéswitches. The 1/O interface is a P1O circuit
generated by the SOPC Builder. To provide a status flag, weyerilerate a special one-bit PIO circuit and use its
edge-capture capability. This P10 is very similar to theutagP10, and it conforms to the register map in Figure
1. Itis defined in the directorgltera.up_avalonDE2 pio, which has to be included in your project. The directory
can be obtained from the Altera University Program site

ftp://ftp.altera.com/up/pub/UniversityrogramIP_Cores/DE2pio.zip

Perform the following steps:
1. Create a new Quartus Il project and implement the samemyas$ done in Part |.

2. Copy thealtera_up_avalonDEZ2_pio directory into your project directory. Open the SOPC Buijdehich
shows the existing Nios Il subsystem. To makedhera up_avalonDEZ2 pio directory visible to the SOPC
Builder, click in theFile menu of the SOPC Builder on the itdrRefresh Component List. The DE2-PIO
component will be listed undévalon Components > University Program DE2 Board.

3. Generate a status-flag P1O using BE2-PIO component. Configure it to be an input port that is one bit
wide. Also, in thelnput Options tab select th&Synchronously capture feature activated by thEalling
edge.

4. Generate the new Nios Il subsystem.

5. Modify your Verilog/VHDL file that specifies the completgstem. Use the pushbutton switklEY; as the
input to the status-flag P10 (the pushbutton switches areedciv).

6. Do the pin assignment and compile the project.

7. Modify your application program to accept a new numbermthe pushbutton switch is pressed. This action
will set the “status flag” bit in thedge-captureegister to 1. After adding the number to the accumulated
sum, your program has to clear the flag by writing a 0 intoatige-captureegister.

8. Download and run your program to demonstrate that it wprkgerly. The program should run continu-
ously and a new number should be added each time the pushbutiich is pressed.

Part IV

In the previous parts the accumulated sum was displayedeorethLEDs. Now, augment your design to display
this sum as a hexadecimal number on the 7-segment display8+EXO0, in addition to the red LEDs.

Part vV

Augment your design and the application program to disgiayeiccumulated sum on the 7-segment displays as a
decimal (rather than hexadecimal) number. The applicgiogram should do the necessary number conversion.

Note: You can use theiv instruction only if you specified the Hardware Divide optiarPart I.

Copyright(©2006 Altera Corporation.

