
Laboratory Exercise 2
Program-Controlled Input/Output

The purpose of this exercise is to investigate the use of devices that provide input and output capabilities for
a processor, and are controlled by software. We will examinethese program-controlled I/O operations from both
the hardware and software points of view. We will make use of parallel interfaces,PIOs, in a Nios II system
implemented on an Altera DE2 board. The background knowledge needed to do this exercise can be acquired
from the tutorials:Introduction to the Altera Nios II Soft ProcessorandIntroduction to the Altera SOPC Builder,
which can be found in the University Program section of the Altera web site.

The PIO interface used in this exercise, which is a componentthat can be generated by using the SOPC Builder,
provides for data transfer in either input or output (or both) directions. The transfer is done in parallel and it may
involve from 1 to 32 bits. The number of bits,n, and the direction of transfer are specified by the user through
Altera’s SOPC Builder. The PIO interface can contain the four registers shown in Figure 1.

0(n-1)

Input/Output data

(a) Data register

(b) Direction register

Direction control for each input/output line

Interrupt enable/disable control for each input line

(c) Interrupt-mask register

(d) Edge-capture register

Edge detection for each input line

Address offset
(in bytes)

0

4

8

12

Figure 1. The registers in the PIO interface.

Each register isn bits long. The registers have the following purpose:

• Dataregister holds then bits of data that are transferred between the PIO interface and the Nios II processor.
It can be implemented as an input, output, or a bidirectionalregister by the SOPC Builder.

• Directionregister defines the direction of the transfer for each of then data bits when a bidirectional interface
is generated.

1



• Interrupt-maskregister is used to enable interrupts from the input lines connected to the PIO.

• Edge-captureregister indicates when a change of logic value is detected in the signals on the input lines
connected to the PIO.

Not all of these registers are generated in a given PIO interface. For example, theDirection register is included
only when a bidirectional interface is specified.

The PIO registers are accessible as if they were memory locations. Any base address that has the four least-
significant bits equal to 0 can be assigned to a PIO (this may bedone automatically by the SOPC Builder). This
becomes the address of theData register. The addresses of the other three registers have offsets of 4, 8, or 12
bytes (1, 2, or 3 words). A full description of the PIO module can be found in the documentPIO Core with Avalon
Interface, which is available in the literature section of Altera’s web site.

The application task in this exercise consists of adding together a set of signed 8-bit numbers that are entered
via the toggle switches on Altera’s DE2 board. The resultingsum is displayed on the LEDs and 7-segment dis-
plays.

Part I

Use 8 toggle switches,SW7−0, as inputs for entering numbers. Use the green lights,LEDG7−0, to display the
number defined by the toggle switches. Use the 16 red lights,LEDR15−0, to display the accumulated sum. A Nios
II system, which includes three PIO interfaces, is the hardware needed for our task. One PIO circuit, connected
to the toggle switches, will provide the input data that can be read by the processor. Two other PIO circuits, con-
nected to the green and red lights, will serve as the output interfaces to allow displaying the number selected by
the switches and the accumulated sum, respectively.

Realize the required hardware by implementing a Nios II system on the DE2 board, as follows:

1. Create a new Quartus II project. Select Cyclone II EP2C35F672C6 as the target chip, which is the FPGA
chip on the Altera DE2 board.

2. Use the SOPC Builder to generate the desired circuit, callednios system, which comprises:

• Nios II/s processor with JTAG Debug Module Level 1; select the following options:

– Embedded Multipliers for Hardware Multiply

– Hardware Divide

• On-chip memory - RAM mode and 32 Kbytes in size

• An 8-bit PIO input circuit

• An 8-bit PIO output circuit

• A 16-bit PIO output circuit

The SOPC Builder will automatically assign the names such aspio 0, pio 1 andpio 2 to the three PIO
components. You can change these names to something that is more meaningful in the context of a specific
design. For example, we can choose the namesnewnumber, greenLEDsandred LEDs.

3. From theSystem menu, selectAuto-Assign Base Addresses. This will assign addresses to all compo-
nents in the designed system. The result will be a system suchas the one shown in Figure 2. Observe the
assigned addresses.

4. Instantiate the generatednios systemwithin a Verilog/VHDL file, which also defines the required connec-
tions to the switches and LEDs on the DE2 board.

5. Assign the pins needed to make the necessary connections,by importing the pin-assignment file
DE2 pin assignmentscsv.

2



6. Compile the Quartus II project.

7. Program and configure the Cyclone II FPGA on the DE2 Board toimplement the generated system.

Figure . The Nios II system implemented by the SOPC Builder.

Part II

Implement the desired task using the Nios II assembly language, as follows:

1. Write a program that reads the contents of the switches, displays the corresponding value on the green LEDs,
adds this number to a sum that is being accumulated, and displays the sum on the red LEDs.

2. Use theAltera Debug Clientsoftware to assemble and download your program.

3. Single-step through the program and verify its correctness by inputting several numbers. Note that single-
stepping through the program will allow you change the inputnumbers without reading the same number
multiple times.

Part III

In this part, we want to add the ability to run the applicationprogram continuously and control the reading of
new numbers by including a pushbutton switch which is activated by the user when a new number is ready to be
read. The desired operation is that the user provides the next number by setting the toggle switches accordingly
and then pressing a pushbutton switch to indicate that the number is ready for reading.

To accomplish this task it is necessary to implement a mechanism that monitors the status of the circuit used to
input the numbers. A commonly-used I/O scheme is to use astatus flagwhich is originally cleared to 0. This flag

3



is then set to 1 as soon as the I/O device interface is ready forthe next data transfer. Upon transferring the data,
the flag is again cleared to 0. Thus, the processor canpoll the status flag to determine when an I/O data transfer
can be made.

In our case, the I/O device is the user who manually sets the toggle switches. The I/O interface is a PIO circuit
generated by the SOPC Builder. To provide a status flag, we will generate a special one-bit PIO circuit and use its
edge-capture capability. This PIO is very similar to the regular PIO, and it conforms to the register map in Figure
1. It is defined in the directoryaltera up avalonDE2 pio, which has to be included in your project. The directory
can be obtained from the Altera University Program site

ftp://ftp.altera.com/up/pub/UniversityProgramIP Cores/DE2pio.zip

Perform the following steps:

1. Create a new Quartus II project and implement the same system as done in Part I.

2. Copy thealtera up avalonDE2 pio directory into your project directory. Open the SOPC Builder, which
shows the existing Nios II subsystem. To make thealtera up avalonDE2 pio directory visible to the SOPC
Builder, click in theFile menu of the SOPC Builder on the itemRefresh Component List. The DE2-PIO
component will be listed underAvalon Components > University Program DE2 Board.

3. Generate a status-flag PIO using theDE2-PIOcomponent. Configure it to be an input port that is one bit
wide. Also, in theInput Options tab select theSynchronously capture feature activated by theFalling
edge.

4. Generate the new Nios II subsystem.

5. Modify your Verilog/VHDL file that specifies the complete system. Use the pushbutton switchKEY0 as the
input to the status-flag PIO (the pushbutton switches are active low).

6. Do the pin assignment and compile the project.

7. Modify your application program to accept a new number when the pushbutton switch is pressed. This action
will set the “status flag” bit in theedge-captureregister to 1. After adding the number to the accumulated
sum, your program has to clear the flag by writing a 0 into theedge-captureregister.

8. Download and run your program to demonstrate that it worksproperly. The program should run continu-
ously and a new number should be added each time the pushbutton switch is pressed.

Part IV

In the previous parts the accumulated sum was displayed on the red LEDs. Now, augment your design to display
this sum as a hexadecimal number on the 7-segment displays HEX3-HEX0, in addition to the red LEDs.

Part V

Augment your design and the application program to display the accumulated sum on the 7-segment displays as a
decimal (rather than hexadecimal) number. The applicationprogram should do the necessary number conversion.

Note: You can use thediv instruction only if you specified the Hardware Divide optionin Part I.

Copyright c©2006 Altera Corporation.

4


