
Laboratory Exercise 5
Bus Communication

The purpose of this exercise is to learn how to communicate using a bus. In the designs generated by using
Altera’s SOPC Builder, the Nios II processor connects to peripheral devices by means of the Avalon Switch Fab-
ric. To connect to the switch fabric, an SOPC Buildercomponentis required. To make it possible to investigate
the bus communication, without requiring the creation of anSOPC Builder component, this exercise will use the
Avalon to External Bus BridgeSOPC component. The bridge allows the designer to create a peripheral device and
connect it to the Nios II system in the Quartus II software. Itcreates a bus-like interface to which one or more
“slave” peripherals can be connected. Figure 1 shows the bussignals and timing information for the external bus.
The required signals are:

• Address – k bits (up to 32). The address of the data to be transferred. Theaddress is aligned to the data
size. For 32-bit data, the address bitsAddress1−0 are equal to0. The byte-enable signals can be used to
transfer less than 4 bytes.

• BusEnable – 1 bit. Indicates that all other signals are valid, and a datatransfer should occur.

• RW – 1 bit. Indicates whether the data transfer is a Read (1) or a Write (0) operation.

• ByteEnable – 16, 8, 4, 2 or 1 bits. Each bit indicates whether or not the corresponding byte should be read
or written. These signals are active high.

• WriteData – 128, 64, 32, 16 or 8 bits. The data to be written to the peripheral device during a Write transfer.

• Acknowledge – 1 bit. Used by the peripheral device to indicate that it has completed the data transfer.

• ReadData – 128, 64, 32, 16 or 8 bits. The data that is read from the peripheral device during a Read
transfer.

• IRQ – 1 bit. Used by the peripheral device to interrupt the Nios IIprocessor. This is an optional signal,
which is not shown in the figure.

The bus is synchronous – all bus signals to the peripheral device must be read on the rising edge of the clock. To
initiate a transfer theAddress, RW, ByteEnableand possiblyWriteDatasignals are set to the appropriate values.
Then, theBusEnablesignal is set to 1.

If the RW signalis 1, then the transfer is a Read operation and the peripheraldevice must set theReadDatasignals
to the appropriate values and set theAcknowledgesignal to 1. TheAcknowledgesignal must remain at 1 for only
one clock cycle. TheReadDatasignals must be constant while theAcknowledgesignal is being asserted. Note
that the reason why theAcknowledgesignal must be high for exactly one clock cycle is that if thissignal spans
two or more cycles it may be interpreted by the Avalon Switch Fabric as corresponding to another transaction.

If the RWsignal is 0, then the transfer is a Write operation and the peripheral device should write the value on the
WriteDatalines to the appropriate location. Once the peripheral device has completed the Write transfer, it must
assert theAcknowledgesignal for one clock cycle.

1

DE2’s Avalon to

(a) External Bus Signals

(b) External Bus Timing Diagram

External Bus Bridge

Slave
Peripheral

Address k

BusEnable
R/W

ByteEnable
WriteData

Acknowledge
ReadData

16

2

16

Nios II System

Write AddressAddress
k 1– 0–

WriteData15 0–

ByteEnable1 0–

ReadData15 0–

Acknowledge

BusEnable

Clock

Read Address

Write Data

Read Data

R/W

Figure 1. The Avalon to External Bus Bridge signals.

Part I

Figure 2 indicates the system that we wish to design and implement. The part of the system that consists of a
Nios II/s processor, aJTAG UART, an on-chip memory block and anAvalon to External Bus Bridge can be
generated using the SOPC Builder. This should produce the system given in Figure 3. The slave peripheral will
be a Verilog/VHDL module which you will design. TheAvalon to External Bus Bridge connects the previously
discussed external bus to the Avalon Switch Fabric of the Nios II system. The switch fabric is the main intercon-
nection network for peripherals in a system generated by theSOPC Builder.

The slave peripheral comprises just four 16-bit registers plus the circuitry needed to display the contents of
these registers on the 7-segment displays on the DE2 board. The registers are accessible as memory locations, so
that the Nios II processor can write data into them.

2

On-chip
memory

Avalon switch fabric

Nios II processor
JTAG UART

interface

USB-Blaster

interface

Host computer

Cyclone II

FPGA chip

Reset_n Clock

JTAG Debug

module

Avalon to
External Bus

Bridge

Slave
Peripheral

External Bus

Figure 2. The desired Nios II system

To facilitate the implementation of the desired peripheral, three modules defined in Verilog/VHDL are pro-
vided. One of these modules are provided in full. The other two are given in a skeleton form and have to be
completed as a part of this exercise. These modules are:

• Lab5 Part1 (which is provided in full)

• Peripheral on External Bus (skeleton is provided)

• Seven Segment Display (skeleton is provided)

The Verilog/VHDL code for these modules is provided on the Altera University Program site

ftp://ftp.altera.com/up/pub/LaboratoryExercises/CompOrg/comporglab5 designfiles.zip

Once the system in Figure 3 has been generated, modify the Verilog/VHDL module,Peripheral on External Bus
to connect it to theAvalon to External Bus Bridge signals. Also, modify this module such that it contains four

3

16-bit registers. Each of these registers should be mapped to one quarter of the address space assigned to the
Avalon to External Bus Bridge by the SOPC Builder. Use the 7-segment displaysHEX3 − 0 to display the
contents of these registers. Since only one register can be displayed at one time on the 7-segment displays, use
two toggle switches,SW1 andSW0, to choose which register to display. These modules, in addition to the modules
generated by the SOPC Builder, should implement the desiredsystem in Figure 2.

Figure 3. The Nios II system specified in the SOPC Builder.

To use the Bridge component, you have to copy the directoryaltera up avalonto externalbusbridge into
your project directory, before you start the SOPC Builder software. This directory is available on the Altera
University Program site

ftp://ftp.altera.com/up/pub/UniversityProgramIP Cores/avalonto externalbusbridge.zip

Implement the required system as follows:

1. Create a new Quartus II project calledLab5 Part1. Select Cyclone II EP2C35F672C6 as the target chip,
which is the FPGA chip on the Altera DE2 board.

2. Use the SOPC Builder to create a system namednios system, which includes the following components:

• Nios II/s processor with JTAG Debug Module Level 1

• On-chip memory - select the RAM mode and the size of 32 Kbytes

• JTAG UART - use the default settings

• Avalon to External Bus Bridge - choose the 16-bit data width and the address range of 512 Kbytes.
These parameters are chosen to simplify the connection to the SRAM chip in Part II of this exercise.
In the SOPC Builder window, the desired bridge is found by selectingAvalon Components > Uni-
versity Program DE2 Board > Avalon to External Bus Bridge.

Note: The choice of the address range of 512 Kbytes implies that k = 19 address lines will be
implemented in the bus.

4

3. Connect the Avalon to External Bus Bridge to Nios II’sdata master port and not to theinstruction master
port. You can remove the connection between the bridge and the instruction master port by clicking on the
connecting path in the SOPC Builder window.

4. From theSystem menu, selectAuto-Assign Base Addresses. You should now have the system shown
in Figure 3.

5. Generate the system, exit the SOPC Builder and return to Quartus II software.

6. Add the three Verilog/VHDL modules mentioned above to your Quartus II project.

7. Check that the generated Nios II system is instantiated correctly within the given Verilog/VHDL module
Lab5 Part1.

8. Modify the Verilog/VHDL modulePeripheral on External Bus to implement the bus protocol needed to
connect the four 16-bit registers to the Avalon Switch.

9. Modify the Verilog/VHDL moduleSeven Segment Display to display the four registers on the seven-
segment displays in hexadecimal format.

10. Import the pin assignments using the fileDE2 pin assignments.csv.

11. Compile your Quartus II Project.

12. Program and configure the Cyclone II FPGA on the DE2 Board to implement the generated system.

13. Create a Nios II assembly-language program to write a different 16-bit number into each of the four registers.

14. Use the Altera Debug Client to compile, download and run your program. Verify that the registers can be
selected for display by using the toggle switchesSW1−0.

Part II

In this part of the exercise we wish to implement a different slave peripheral. The peripheral is to serve as a
controller that provides access to the SRAM chip in the DE2 board – it has to connect the SRAM chip to the
Avalon Switch Fabric.

The SRAM chip uses the following signals:

• SRAMADDR17−0 – 18-bits, input. The addresses of the 16-bit data words.

• SRAMCE N – 1-bit, input. Indicates that all other signals are valid. (Chip Enable)

• SRAMWE N – 1-bit, input. Indicates that the bus transfer is a write operation. (Write Enable)

• SRAMOE N – 1-bit, input. Indicates that the bus transfer is a read operation. (Output/Read Enable)

• SRAMUB N – 1-bit, input. Indicates that the upper byte should be read or written. (Upper Byte Enable)

• SRAMLB N – 1-bit, input. Indicates that the lower byte should be read or written. (Lower Byte Enable)

• SRAMDQ15−0 – 16-bits, bidirectional. These lines carry the data being transferred. They are driven by the
SRAM chip during read operations and by your controller during write operations.

Figure 4 demonstrates the timing for the SRAM signals. Notice that the SRAM chip completes data transfers
within one cycle. Also, notice that all control signals are active low. The signal SRAMWrite Data is an internal
signal equivalent to SRAMDQ, but it is used in write transfers only. This signal must beset to high impedance,
except during a write transfer, when it is set to the data to bewritten.

5

SRAM_ADDR17 0–

SRAM_Write_Data15 0–

SRAM_DQ15 0–

SRAM_CE_N

Clock

SRAM_OE_N

SRAM_WE_N

SRAM_UB_N

SRAM_LB_N

Figure 4. The SRAM signals timing diagram

The SRAM chip can read and write one 16-bit value within one 50-MHz clock cycle, so all signals to the
SRAM chip need only be asserted for that one clock cycle for each transfer. The SRAM controller will act as the
slave peripheral in Figure 1.

Perform the following steps:

1. Create a new project calledLab5 Part2. Use the same SOPC Builder project settings as in Part 1 of this
exercise, and generate a Nios II system that corresponds to Figure 3.

2. Instantiate the generated system into your project to produce the desired controller. Two Verilog/VHDL
files,Lab5 Part2andSRAMControllerare provided (in skeleton form) to help you get started. Theycan be
found on the the same Altera web page as the files used in Part I.

3. Compile your project and configure the Cyclone II chip to implement the generated system.

4. Write a Nios II assembly-language program to write some sample data to the SRAM chip and then read this
data back into the processor registers.

5. Run your program to verify the correctness of your design.You can also test the SRAM controller by using
the memory window in the Altera Debug Client.

Part III

In this part we will combine the designs in Parts I and II. We want to use just one Avalon to External Bus Bridge
and connect two slave peripherals to it. One peripheral willbe the SRAM controller and the other peripheral will
be the four registers with the associated display circuitry.

Perform the following steps:

1. Create a new project calledLab5 Part3.

2. Use the SOPC Builder to generate the system in Figure 3, butchoose the address range of 1024 Kbytes for
the Avalon to External Bus Bridge component. Note that this will change the base addresses that the SOPC
Builder will auto-assign to the components of the system.

6

3. Prepare a Verilog/VHDL file that instantiates the Nios II system and implements the two slave peripherals
such that

• The SRAM controller uses the low-order 512 Kbytes of the 1024-Kbyte address space

• The four registers use the remaining address space

4. Modify the other Verilog/VHDL files used in Parts I and II accordingly.

5. Compile your project and configure the Cyclone II chip to implement the generated system.

6. Write a Nios II assembly-language program that writes some sample data to the SRAM chip and then reads
this data into the four registers in the slave peripheral.

7. Run your program to show that the sample data is correctly displayed on the 7-segment displays.

Copyright c©2006 Altera Corporation.

7

