
JPEG decoder example design

Storage
Storage

Compute

Compute

Motivation

 Increasing storage requirements for images

 Customer application:
 Provide scaled versions of images based on requests

 Tradeoff between compute and storage

2

Compiling OpenCL to FPGAs

3

x86

PCIe

ACL

Compiler
Standard

C Compiler

SOF X86 binary

OpenCL

Host Program + Kernels

main()
{
 read_data_from_file(…);
 maninpulate_data(…);

 clEnqueueWriteBuffer(…);
 clEnqueueKernel(…, sum, …);
 clEnqueueReadBuffer(…);

 display_result_to_user(…);
}

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

Kernel Programs

Host Program

Compiling OpenCL to FPGAs (cont’d)

4

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

Load Load Load Load

Store Store

PCIe

DDR3

DMA

main()
{
 read_data_from_file(…);
 maninpulate_data(…);

 clEnqueueWriteBuffer(…);
 clEnqueueKernel(…, sum, …);
 clEnqueueReadBuffer(…);

 display_result_to_user(…);
}

Host executable

Altera

OpenCL

library

Operating system (Linux / Windows)

OpenCL

PCIe

driver

Processing flow

5

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

Load Load Load Load

Store Store

PCIe

DDR3

DMA

main()
{
 read_data_from_file(…);
 maninpulate_data(…);

 clEnqueueWriteBuffer(…);
 clEnqueueKernel(…, sum, …);
 clEnqueueReadBuffer(…);

 display_result_to_user(…);
}

Host executable

Altera

OpenCL

library

Operating system (Linux / Windows)

OpenCL

PCIe

driver

Processing flow

6

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

Load Load Load Load

Store Store

PCIe

DDR3

DMA

main()
{
 read_data_from_file(…);
 maninpulate_data(…);

 clEnqueueWriteBuffer(…);
 clEnqueueKernel(…, sum, …);
 clEnqueueReadBuffer(…);

 display_result_to_user(…);
}

Host executable

Altera

OpenCL

library

Operating system (Linux / Windows)

OpenCL

PCIe

driver

Processing flow

7

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

Load Load Load Load

Store Store

PCIe

DDR3

DMA

main()
{
 read_data_from_file(…);
 maninpulate_data(…);

 clEnqueueWriteBuffer(…);
 clEnqueueKernel(…, sum, …);
 clEnqueueReadBuffer(…);

 display_result_to_user(…);
}

Host executable

Altera

OpenCL

library

Operating system (Linux / Windows)

OpenCL

PCIe

driver

Concurrent processing and transfers

8

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer)
{
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
}

Load Load Load Load

Store Store

PCIe

DMA

main()
{
 read_data_from_file(…);
 maninpulate_data(…);

 clEnqueueWriteBuffer(…);
 clEnqueueKernel(…, sum, …);
 clEnqueueReadBuffer(…);

 display_result_to_user(…);
}

Host executable

Altera

OpenCL

library

Operating system (Linux / Windows)

OpenCL

PCIe

driver

B
u

ff
e

r
1

B
u

ff
e

r
2

B
u

ff
e

r
3

Concurrent processing and transfers (cont’d)

 Host schedules transfers and kernel execution on

different data sets
 Can hide transfer latency

 JPEG decoder leverages concurrent transfers and

computation
 Performance determined by slowest kernel execution or transfer

9

Transfer #1 Transfer #2 Transfer #3

Compute #1 Compute #2 Compute #3

time

JPEG decoder

 Data flow: decompresses images as a first step
 i.e. front-end for other image processing blocks running on the FPGA

 FPGA architecture allows several accelerators to run concurrently

 Accelerator performance decoupled of subsequent processing

 Throughput is proportional with FPGA resources used
 Implemented a decoder that uses one third of a Stratix V A7 FPGA resources

 Leaves a large number of resources available for subsequent image processing

10

JPEG decoder

JPEG image BMP image

Image

processing

FPGA

Results

 Baseline JPEG decompression
 4:4:4 and 4:2:0 downsampling

 Arbitrary image resolution
 Decoding speed up to

 900 Mpixels / s (2.7GB / s)

11

Image Image size FPGA

Throughput

(images / s)

1.jpeg 2048 x 1536 287

2.jpeg 308 x 231 6265

3.jpeg 1024 x 768 1044

4.jpeg 768 x 1024 1059

Measured performance

Other performance metrics

 Significantly lower power consumption
 FPGA power envelope is ~25W

 Overlaps image transfer and computation
 Host simply reads images from disk, inspects header and transfers the

images to the FPGA

 JPEG decoder is always active, decoding previously transferred images

 Scalable implementation
 Performance is proportional to the number of Huffman decoders

 6-way decoder in this implementation

12

6-way JPEG decoder

75.4 k ALMs

166 DSPs
PCIe DDRx

13% logic 36% logic

Stratix V A7 FPGA

How to decode a JPEG image?

13

Reading file

headers

Huffman

decoding

Run- length

decoding

Inverse

quantization

Inverse

DCT
YCBCR

to RGB

Parser Scatter Dot product 64 int 64 int 3 int 3 int Table initialization

Huffman tables

• DC tables

• AC tables

Quantization tables

 Encoding steps:
 Image separated into Y, Cb and Cr components

 8 x 8 blocks on each component are transformed using DCT transform

 Image data is entropy encoded
 Run-length coding

 Huffman coding

 Split JPEG decoding into several kernels
 Kernel for Huffman and run-length decoding

 Kernel for inverse quantization, iDCT and RGB conversion

 All these kernels run concurrently

re
v
e
rs

e

Huffman / Run-length decoder details

 Serial process, codes are decoded one at a time
 All codes in a 8x8 block are adjacent in the encoded stream

 Once all codes in block are decoded, they are forwarded to iDCT

 Single threaded OpenCL
 Essentially C code

 Decodes 1 coefficient / loop iteration

 Translates into one or more DCT coefficients / cycle

 Takes into account run-length decoding that skips coefficients equal to 0

 Huffman codes are different for each JPEG image
 Loaded at accelerator initialization

 Multiple decoders can process independent images
 Current implementation uses 6 parallel Huffman decoders

 Decoders are truly independent, not alike GPUs that impose SIMD
restrictions

14

Inverse quantization / iDCT / RGB conversion

 Processes 16 coefficients / cycle
 Receives data from multiple Huffman decoders

 Expressed as an OpenCL multi-threaded kernel
 Multi-threaded C

 Synchronization points

 Stores 6 blocks of 8 x 8 points
 Supports both 4:4:4 and 4:2:0 formats

 Generates a 8 x 16 or 16 x 16 tile of the output

15

JPEG decoder – Application architecture

16

Reading file

headers

Huffman

decoding

Run- length

decoding

Inverse

quantization

Inverse

DCT
YCBCR

to RGB

Reading file

headers

Huffman decoding Fetch

Multiplex

streams

iDCT

+

RGB

Huffman decoding Fetch

D
D

R
3

D
D

R
3

PCIe
PCIe

FPGA

channel

channel

channel

Reads from memory

Initial data parsing

Round-robin

multiplexing, ensures

that iDCT receive full

blocks

Functional flow

x 6-way

Hardware architecture

Channels

 Altera’s extension to OpenCL
 Mechanism for direct kernel to kernel communication

 Preserves DDR3 bandwidth for other components of the application

 Code example from the multiplexer kernel

17

kernel void Multiplex() {
 while (true) {
 #pragma unroll
 for (int i = 0; i < COPIES; i++) {
 if (i == source) hc = read_channel_altera(results[i]);
 }
 ...
 write_channel_altera(toDCT, dc);
 ...
 }
}

kernel void DCTandRGB(global uchar *output, uchar write) {
struct DCTContext dc = read_channel_altera(toDCT);
 ...
}

Channels from multiple decoders

Channel to iDCT

Measurements

 End to end performance measurements
 Include host to device and device to host transfers over PCIe

 Divide total time by the number of images

 Batch processing mode sends a group of images for processing

18

Start timer

Analyze header

Transfer compressed

image to FPGA

Decode

JPEG

Transfer decoded image

to host

Analyze header

Transfer compressed

image to FPGA

Decode

JPEG

Transfer decoded image

to host

Analyze header

Transfer compressed

image to FPGA

Decode

JPEG

Transfer decoded image

to host

Stop timer

(copy 1)

(copy 2)

(copy x)

JPEG decoder in a nutshell

 Performance
 Up to 2.7 GB /s of decoded data

 1/3 of the resources on the A7 FPGA device

 Entire decoder implemented in OpenCL

 OpenCL implementation allows fast changes to the

algorithm, i.e.
 Enhance algorithm based on image set properties

 Increase throughput by instantiating more decoders

 Include decoder in a larger design

19

Thank You Thank You

