LAB1	 (DE1 version)			

Associated Files: DE1.qsf and CH2_DE1.qar	

Exercise #1 (Creating a new project)
	
Step 0: Create a Laboratory Folder
Quartus II will put one design project in one folder. Therefore, after each lab you will create several folders (one for each exercise and assignment). You should first create a folder as a holder for all these design project folders to come.

Step 1: Create and Configure the Project
· Create a course directory in your home directory or on the “Desktop” special directory. All the lab associated files should be saved in this folder. Then, create a sub-directory called “lab01” under the course directory. All the project directories created in this lab will be located inside the “lab01” sub-directory.
· The main program used for the labs is electronic design automation (EDA) tool by Altera called Quartus II. To start a new project, click “File New Project Wizard”. Once the wizard window appears, you are on the “introduction” page. Click “Next” to advance to page 1 of 5. The three fields are for working directory, project name, and top-level entity. Depends on which folder you are in when you started Quartus, the directory name will show up as default in the first field. Choose the parent directory as “lab01” and create a new project folder call "lab01/combinational". Type in “combinational” to the second field (project name), the third field will be filled automatically. The design names and folder names are case-insensitive and should be kept the same. Click “Next” not “Finish”.
· On page 2 of 5, click next since there is no additional file we want to import.
· On page 3 of 5, select the followings: (for the FPGA on the DE1 board)
· Device family: “Cyclone II”
· Available devices: select “EP2C20F484C7”
· Page 4 of 5 asks if additional EDA tools are used. Make sure that “ModelSim-Altera” is the tool for “Simulation” and “VHDL” is the format.
· Page 5 of 5 is a summary page of your project settings. Click Finish to complete the process of creating a new project.
· At Linux (Ubuntu) or Windows, find the directory or folder named “combinational” that you have just created in the “lab01” directory. All design files herein will be stored here.

Step 2: VHDL/Text editor
· “File New” and select “VHDL File” under the “Design Files”.
· Type in the following VHDL codes:
library ieee;
use ieee.std_logic_1164.all;

entity combinational is port (
	SW: 	in 	std_logic_vector(1 downto 0);
	LEDR: out 	std_logic_vector(3 downto 0)
);
end;

architecture demo of combinational is
begin
LEDR(3) <= 	SW(0);
LEDR(2) <=	SW(1);
LEDR(1) <=	not(SW(1) xor SW(0));
LEDR(0) <=	SW(1) or SW(0);
end;

· Save the file as “combinational.vhd”. Note that the file name is the same as the project name and the entity name. This means that this VHDL design file will automatically be the “top-level entity” of this design project.
· Remember to make sure that the file is saved to the correct directory (the current project directory). Quartus II will point at the directory from previous activity.
· Fill in the truth table in the lab report according to the four Boolean equations described in the VHDL above. We will use this truth table to verify the correctness of the hardware implementation later.

Step 3: Pin Assignments
· Use "Assignments Import Assignments..." to import DE1.qsf. The DE1.qsf contains all the pin assignments for the DE1 board. The .qsf file can be edited using either "Assignment Editor" or "Pin Planner" under the "Assignments" menu. The DE1.qsf is actually a plain text file so it can also be viewed and edited with any text editor.
· Importing ping assignments is required for every new project. Quartus II have the device or FPGA information but no information on the FPGA board, i.e. DE1 board. The pin assignments DE1.qsf is the FPGA board information for Quartus II.
· The Pin names of switches and LEDs (LEDR for red LEDs and LEDG for green LEDs) are also printed on the FPGA board itself.

Step 4: Compilation
· “Processing Start Compilation” will process the above design and generate a logic circuit fitted to the FPGA. Any syntax error may be identified here. The messages will be displayed at the bottom window pane. The errors are shown in red. Double click on the error will lead you back to the error in the VHDL editor.
· When the compilation is successful, a “Compilation Report” window will show up giving you the “Flow Summary.” Here you will find all the important information related to your design. Record the number of hardware usage in the lab report.

Step 5: Netlist Viewer
· “Tools Netlist Viewers RTL Viewer” will generate a RTL-level logic circuit diagram. Verify that the circuits correctly implemented the four Boolean equations described in above VHDL codes.
· Print out the RTL view and attach it to the lab report.

Step 6: Chip Planner
· “Tools Chip Planner” will generate a view of the inside of the FPGA. Double click ro zoom in on a used LAB (darker blue color block) to reveal that each LAB consists of 16 logic elements (LE’s).
· Double click one of the darker LE will reveal the details in a "Resource Property Editor". Each LE has a 4-input lookup table with associated multiplexers and a D-type flip-flop.

Step 7: Programming the DE1 board
· “Tools Programmer” will bring out the programmer window. See Appendix C of the textbook for the programmer usages.
· Make sure it shows “USB-Blaster”, and the Mode is “JTAG”.
· File is “combinational.sof” under the "output_files" folder and “Program/Config” should be checked. If the file is not show use "Add File.." and find the .sof under the "output_files" folder.
· Make sure DE1’s power is on. Click “Start”.
· Use the switches on the DE1 board to verify that the logic circuit has been “programmed” to the FPGA. Use the truth table derived in Step 2 to verify the circuit’s output for each input combination.
· When the programmer is called for the first time, it may ask you to save it before closing. You should choose “NO”. The next time you open the same project in Quartus II, the programmer will pick the correct output file automatically.

Step 8: Archive Project
	The Quartus II project can be archived and later be restored. This is a very useful function for transporting project between user accounts or between computers. For example, you can archive the project in the laboratory and bring it home and restore it on your home PC with Quartus II Web edition. Your ELE account has limited storage space and therefore, it is necessary to save your older design archives somewhere else later.
· “Project Archive Project…” will bring out the archive project window.
· Make sure the archive file name is “combinational” and then click “OK”.
· In the "output_files" folder, you will find a file name “combinational.qar”. This is the archived project. DO NOT use other program to open the file. Always use Quartus II for archive and restore of the project.

Exercise #2 (WHEN-ELSE)
	
Step 1: Restore CH2_DE1.qar
	In Quatus II, use “Project Restore Archived Project…” to restore “CH2_DE1.qar”. You may use “File Open Project…” and select “CH2_DE1.qar” to restore it. The default directory name is “CH2_DE1_restored” but you may rename it. Be careful to check where the parent directory is before commit to the project restore action. All VHDL codes in Chapter 2 can be found here.

Step 2: Add an additional circuit to “combinational”
· Close the “CH2_DE1” project and open the previous “combinational” project.
· Use “File Open…” to open the “demo1.vhd” from the CH2_DE1 project directory. Alternatively, you may open “demo1.vhd” on Linux or Windows desktop using any text editor.
· There are four versions of the same circuits described in the “demo1.vhd” as mentioned in Chapter 2. The first version was “uncommented” while the last three versions were “commented”. In Quartus II’s VHDL editor, you may select/highlight the lines and right click to “uncomment selection” or “comment selection”
· Copy the third version as below and paste it to the “combinational.vhd”.
b <= 	"0010" when a="00" else
	"1001" when a="01" else
	"0101" when a="10" else
	"1111";
· Edit the entity declaration to add LEDGs as circuit outputs:
entity combinational is port (
	SW: 	in 	std_logic_vector(1 downto 0);
	LEDR: out 	std_logic_vector(3 downto 0);
LEDG: out 	std_logic_vector(3 downto 0)
);
end;
· For the above when-else statement, change ‘b’ to ‘LEDG’ and ‘a’ to ‘SW’. Remember this is combinational circuit, so the sequence in which the statements are written has no impact on the circuit design and implementation.

Step 3: Compilation and RTL viewer
· Compile the new design and record the hardware usage numbers from the compilation report in the lab report.
· Use RTL viewer to see the new circuit. Print out the RTL view and draw boundaries on the circuits from exercise#1. Include this marked print out in the lab report.

Step 4: Program the DE1 board
Program the DE1 board as before. Use the switches SW(1) and SW(0) to verify the functions as shown in the truth table previously obtained. The newly added circuit will output to the green LEDs. From the RTL view, we see that the new circuit accepts the same set of inputs as those for the old circuits from exercise#1. Therefore, if the outputs are identical (red LEDs = green LEDs) then both circuits are equivalent or identical in their Boolean functions.

Exercise #3 (IF and Debounced)

Step 1: Create a new “Sequential” project
· Follow the steps from exercise#1 and create a new project called “sequential”. The project directory should be saved under the “lab01” parent directory as before.
· Create a new VHDL file called “sequential” and copy the content of “demo_sequential.vhd” from the CH2_DE1 restored project.
· Perform the following modifications:
a. Rename the entity as “sequential”.
b. Remove the two commented “CASE-WHEN” example VHDL codes.
c. Rename “clock” to “clock_50”, “reset” to “KEY(0)”, “S” to “SW” and “A” to “LEDR”.
d. Replace “reset” in the entity declaration with KEY (all four keys).
e. Since “KEY” is active-low, change the reset condition from ‘1’ to ‘0’.
The VHDL codes should look like:
library ieee;
use ieee.std_logic_1164.all;

entity sequential is port (
	clock_50 : in std_logic;
	KEY : in std_logic_vector(3 downto 0);
	SW: in std_logic_vector(2 downto 0);
	LEDR: out std_logic_vector(1 downto 0));
end;

architecture demo of sequential is
begin

--The first example using "IF"
Process(clock_50, key(0))
	begin
		if(key(0) = '0') then	LEDR <= "10";
		elsif(clock_50'event AND clock_50 = '1') then
			if(SW = "100") then LEDR <= "00";
			elsif(SW = "010") then LEDR <= "01";
			else LEDR <= "11";
			end if;
		end if;		
	end process;
end architecture demo;

Step 2: Truth table
· Fill in the truth table in the lab report for exercise#3 according to the “IF” statement in the above VHDL codes.
· The design above specifies that the circuit outputs LEDR = “10” when ‘reset’. Do we have a “10” output in the truth table? Answer this question later in the lab report when you complete the rest of this exercise.

Step 3: Import Pin Assignments, Compilation and RTL viewer
· Since this is a new project, we need to import the pin assignment file “DE1.qsf” before compilation.
· Compile the new design and record the hardware usage numbers from the compilation report in the lab report.
· Use RTL viewer to see the circuit and include the print out in the lab report.

Step 4: Program the DE1 board
Program the DE1 board and use SW to verify the LEDR outputs against the truth table. Since the clock input is “clock_50” or the 50MHz clock source on the DE1 board, the sequential circuit loads the new values to the flip-flops (and eventually to LEDRs) every 20ns. Therefore, with this setting, the observable circuit behavior is no different from the combinational version. However, the missing LEDR = “10” gives a clue of the differences. To better observe the circuit behavior, we need to slow down the clock. In fact, we are going to use a manual clock input below.

Step 5: Manual clock input
The idea here is to replace the clock input “clock_50” with a pushbutton KEY(3). However, we need to “filter” the Key(3) input with a “debounce” circuit before we can use it as a clock input. Note that Key(0) is used as a “reset” input without a “debounce” circuit. The following functional block diagram illustrates the modifications required.

· Import “debounce.vhd” from CH2_DE1 restored project to the current project.
a. First option: Open the “debounce.vhd” file at the CH2_DE1_resored directory and use “File Save As…” to save it in the current project directory.
b. Second option: Open the “debounce.vhd” file at the CH2_DE1_restored directory. Select all and copy the entire content. Create a new VHDL file and paste the entire content in the new file. Save it as “debounce.vhd” in the current directory.
c. Third option: At Linux or Windows, copy the file “debounce.vhd” from the CH2_DE1_restored to the current project directory “sequential”. At Quartus II, “Project Add/Remove Files in Project…” to add “debounce.vhd” to the project.
In Quartus II, all project related files are listed in the “Project Navigator” window at the upper left corner.
· Perform the following modifications to the VHDL codes:
a. Replace references to “clock_50” with “newclk”.
b. Add the declaration of “newclk”. This is an internal signal and so the declaration is added between the “Architecture” and “begin”.
c. Use “component instantiation” to include the “debounce” circuit into the design.

library ieee;
use ieee.std_logic_1164.all;

entity sequential is port (
	clock_50 : in std_logic;
	KEY : in std_logic(3 downto 0);
	SW: in std_logic_vector(2 downto 0);
	LEDR: out std_logic_vector(1 downto 0));
end;

architecture demo of sequential is
	signal newclk: std_logic;
begin

filter: entity work.debounce port map(
	pin => KEY(3), output => newclk, clock => clock_50);

Process(newclk, key(0))
	begin
		if(key(0) = '0') then	LEDR <= "10";
		elsif(newclk'event AND newclk = '1') then
			if(SW = "100") then LEDR <= "00";
			elsif(SW = "010") then LEDR <= "01";
			else LEDR <= "11";
			end if;
		end if;		
	end process;
end architecture demo;

Step 6: Program the DE1 board again
Re-compile the design and program the DE1 board again so the FPGA is loaded with the new design. The LEDR should show “10”. If not, hit the “reset” or Key(0) so LEDR = “10”. Change the SW values and the LEDR values are not changed. The new LEDR value is updated only on the next rising edge of the clock, or “newclk” in this design. Remember that KEYs are active-low. Therefore, the rising edge occurs when Key(3) is being released. You may change the VHDL code so the circuit is operated on the falling edge instead. Verify the truth table and answer the question why LEDR = ‘10’ was not seen in the first version of the design.

LAB1 Report						Name: ________________
																					Name: ________________
Exercise#1
1. From step 2: 	Fill in the following truth table
	SW(1)
	SW(0)
	LEDR(3)
	LEDR(2)
	LEDR(1)
	LEDR(0)

	0
	0
	
	
	
	

	0
	1
	
	
	
	

	1
	0
	
	
	
	

	1
	1
	
	
	
	

2. From step 4: 	What were the hardware numbers on the compilation report summary?
		Total logic elements				___________ / 18,752 (_______ %)
			Total combinational functions	___________ / 18,752 (_______ %)
			Dedicated logic registers		___________ / 18,752 (_______ %)

3. From step 5: 	Mark the RTL view print out as “exercise#1” and attach it to this report.

Exercise#2
1. From step 3: What were the hardware numbers on the compilation report summary?
		Total logic elements				___________ / 18,752 (_______ %)
			Total combinational functions	___________ / 18,752 (_______ %)
			Dedicated logic registers		___________ / 18,752 (_______ %)

2. From step 3: Attached the RTL view print out and mark it as “exercise#2”. Remember to draw a boundary around the circuit from exercise#1.

Exercise#3
1. From step 2: 	Fill in the following truth table

	SW(2)
	SW(1)
	SW(0)
	LEDR(1)
	LEDR(0)

	0
	0
	0
	
	

	0
	0
	1
	
	

	0
	1
	0
	
	

	0
	1
	1
	
	

	1
	0
	0
	
	

	1
	0
	1
	
	

	1
	1
	0
	
	

	1
	1
	1
	
	

2. From step 3: What were the hardware numbers on the compilation report summary?
		Total logic elements				___________ / 18,752 (_______ %)
			Total combinational functions	___________ / 18,752 (_______ %)
			Dedicated logic registers		___________ / 18,752 (_______ %)

3. From step 3: Attached the RTL view print out and mark it as “exercise#3”.

4. From step 6:
Why LEDR = “10” was not in the truth table?

	Why LEDR = “10” was not seen when the circuit is running using the 50MHz clock?

Grade: _____________

Assignment Verified by: ____________________________________
7

