/_\
Innovate FPGAS

EM 076
Real-time HDR video

Team members: Vladislav Sharshin, Andrey Papushin, Yelena Kirichenko /
Independent Team

I. High-level Project Description

In today’s world, it is very important to keep up with the times, not to lose sight of
significant events, to follow the current news and know what is happening around.
In very rare cases a person can be present personally at the place of events and
view the happenings, but the technologies of 21st century allow us to receive up-
to-date information being at home.

The usual and most informative way for us to observe the outside world is TV
reports and video broadcastings from the place of the most significant events.
Online broadcasts and live reports can be called the most exciting and fascinating
way of observing, for example the start of a new international expedition to the
ISS, a football match, a scientific experiment, an observation over animals in wild
nature and so on. Of course, the real time view the happenings on the other end of
the globe captures us.

One of the main tool of perception and study of the world around for a human are
eyes. In case of fast change of images, the human eyes are capable to adapt
dynamically to happenings, depending on the situation, to compensate an
imbalance of different items brightness.

The human eye considerably exceeds the modern cameras and it is impossible to
transmit the image through the technical devices so as the person would see it.

One of the main disadvantage of image sensors of the modern available video
cameras is the dynamic range (our eyes are capable to perceive the dynamic range
about 10-14 exposure steps that completely covers he dynamic range of most
compact cameras (5-7 steps) — it means that the camera can transmit image details
either in dark or light colors.

High Dynamic Range (HDR) is applied to eliminate this disadvantage. In order to
receive a wider dynamic range several images, captured at different exposures, are
combined to produce a single image containing details from all source images in
both extreme shadows and maximum lights.

Below is a picture showing the difference between dynamic range of the human
eye, standard camera and the image received with the using HDR technology.

69

Innovate FPGAS

Figure 1. Difference between dynamic range of the human eye, standard camera
and the image received with the using HDR technology

Nowadays video with HDR technology is practically not applied, unlike the photo,
but gains popularity. For HDR-video a standard approach is used that works well
for photo but has its disadvantages when shooting video. At this approach a single
camera is usually used and HDR-video is made as a result of cyclic repetition of
the following actions:

e shooting of the first frame

e exposure reorganization

e shooting of the second frame
e combining of two images

This approach has two main disadvantages: it leads to a significant reduction of
shots number per second, and if the subject moves the image will be blurred as the
subject relocates during the exposure rearranging.

This method considerably complicates the implementation of such tasks as, for
example, slow motion video in HDR mode.

In our project we have implemented a merge of two video streams with the low
dynamic range resulting in HDR video in real time. Usage of the Development Kit
Terasic DE10-Nano KIT with Intel SoC (FPGA+ARM A9) Cyclone V for data
processing allowed us to eliminate above disadvantages.

I1. Block Diagram

The main idea of our work is application of HDR technology to improve color
reproduction quality while video streams, displayed on the monitor in the real time, when
shooting of video in backlight (the light source is behind the subject), shooting objects
located in different light zones (shadow/intensive light), shooting fast moving objects.

70

/’_\
Innovate FPGAS

To implement HDR real time video technology, excluding disadvantages, that are
presented at a method a single camera used, we chose two identical cameras to shoot
video simultaneously, but with different exposure (1st is low, 2nd is high).

Figure 2 shows the Block diagram of the device.

Intel SoC (ARM+FPGA)

HDR-stream

LDR-stream G {} LDR-stream

SCREEN

Terasic DE10-Nano Kit

Figure 2. Block diagram

The cameras transmit image to Intel FPGA, where the uniform image is formed by
means of mathematical algorithms for data processing. If desired, various filters
(edge detection, blur, black and white, “three-dimensional image”) are applied to
the resulting image and the tone correction algorithm is applied.

ARM processor is used to control camera modules, FPGA design and host PC
communication, and allows us:

e to set the required resolution and exposure values for each camera;
e toreceive an image separately from camera 0 or camera 1;
e toenable/ disable HDR mode, etc.

Figure 3-4 shows the device prototype.

71

/_\
Innovate FPGAS

YL F. N VS ™

for Intel FPGA University Pr

Figure 3-4. The device prototype

[11. Intel FPGA Virtues in Your Project

The main idea of HDR real time video producing via FPGA is a parallel data

72

Innovate FPGAS

processing. The data comes from two cameras simultaneously. So we need all the
calculations is parallel.

Thanks to implementation of both the parallel architecture and pipeline, Intel
FPGA enables to make this process more efficient than CPU.

For example, we describe RAW2RGB conversion module in Verilog, then we
implement module copies to FPGA, where data from the 0 and 1 cameras are
processed. If it's necessary, we can connect 3-4-10 cameras, and even in this case
RAW streams from all cameras will be processed and converted to HDR-stream
simultaneously.

We have a necessity of application pipeline method for data flow processing.
Calculations in modules occur one after another without feedbacks. The modules
are also connected one after the other to the pipeline. The data stream is input and
set to the output (after some of latency) without interruption.

For example, N-line processed is outputted to the monitor, N+1-line is processed
via HDR algorithm, and N+2-line is input and converted from RAW to RGB, -
and all these are happen simultaneously.

We have a possibility to rearrange an FPGA design. We can:
e replace cameras on any other;

e replace the HDMI signal receiver with, e.g., TFT display without using
additional chips by connecting a new receiver to Intel FPGA pins and
altering FPGA design;

e reassign the input and output pins and voltage standards, etc.

All features described are impossible, when the ASIC or CPU are used.

The structure and logic of our project is based on the FPGA virtues, which provide
good opportunities to improve the system and algorithms.

It’s possible to expand the project using Intel FPGA. Additional filters can be
applied if needed, as well as real-time video.

To Improve the project performance we are going to replace the camera modules
with more productive ones and increase their amount. Thanks to FPGA features,

there is no need to rebuild a PCB, make additional purchases. The only change is
to adjust the code of the input module is a connecting to the new sensors.

IV. Functional Description

5.1. Operating principle of the system
73

Innovate FPGAS

The functional diagram of FPGA design demonstrating the mutual arrangement of
modules is shown on figure 6.

HPS space

hps2fpga bridge Iwhps2fpga bridge fpga2sdram bridge

(o] i S —{s—1{s]
A
.. A S m—
3 3 B
e '------ L B B B B B B B B _NB B BN J LB B B B B B B N B B B B N B B § N] LR B B N B B J
:2x20pm: | Fa | M 1
1 Geio ! 1 h = S sdram sdram
A ' : ps_register | mem J_%Imma write et
1 sel " LA
! Ppaal bl 500 |5 7y 7'y
8E -
1 ' 1 [5ccB camera E L28 .
] LI | " g - i
i ¥ contig i a g 5
L hps_switch g :
: SCCB camll g 1 : mem _avl ifc SE '; IE ‘Z
1lscce caman 1 4 e = E
: H M| | raw_ 0 Raw2rgb 1gb_0 g
H : 1 [L227 [=3 Dbilinear = 2
1 1 inter 3 |
: Cam ULL|.> 3 ™ -'"E = — g hist_switch
1 g - Q = rgb_hdr s BpMvI| | 8
: 12| [E| [E B = 4 x T2
1 | & g =] - 5 1| B
: 11 R2 e | g — 1
1 g = g o filter "
1 1 » = E. Tone
H 1| 2093 >E X 1
1 iyl 2 = = mapping ; L 1
1 -] z M
1 \ 4 B e 2 et
1—Y 11 |E = R 2 o . 1
: i aw 1 Raw2rgb] < hist calc 1
. 1 1 ~——3 bilinear Y_comp + ~ 1
1 : 1 interp ‘ 1
i 1 1
1 : 1 1
: 1 1 FPGA part 1
1
L ----- -. L---J

Figure 6. Functional scheme of the system

We use two cameras, shooting videos simultaneously with different exposure (1st
is low, 2nd is high).

Two RAW _data streams are transmitted from cameras to FPGA,
When the DE-nano10 is ON, “preloader” and “u-boot” run in the ARM.

U-boot firmware updates FPGA and passes control to the Linux kernel, and then
system is ready-to-run. After that, User switches on the User Program. Now the
system is ready to use.

SCCB_camera_config module reads register values and transmits data from the
cameras via 12C data protocol

In the convert2avl_stream module the data, received from cameras with the
different frequencies, is resynchronized to the system clock and the beginning of
frames are synchronized with each other. Further processing occurs in parallel in a
single clock domain.

Gamma correction module applies User changes image to make it better to watch.

Synchronized data streams transmit to the fix_parallax module, where two frames,
received from two cameras, shift from each other to fix parallax.

74

Innovate FPGAS

The shift value fixes by parallax_corr signal, received from ARM.

In RAW2RGB_modules the RAW stream is converted into 3 color components of
RGB color space, that arrive to the module implementing the HDR algorithm

In HDR_module LDR streams are combined into one HDR stream according to
Paul Debevec algorithm

Received HDR streams can be optionally subjected to a tone correction in the
wrp_tone_mapping module and/or filltered by matrix filter in the wrp_conv_filter
module

The processed stream is recorded in the frame buffer in DDR3 memory in the
sdram_write module

The HDMI_TX_module requests data from the sdram_read, resynchronizes it to
the HDMI_TX chip's clock domain and sends it to the chip that provides support
for the HDMI standard.

In this architecture ARM doesn’t participate in data processing, the receiver is a
monitor, but each frame is registered in shared memory DDR3 access to which has
the processor.

Thus, if the process work is required, in our architecture ARM has access to each
HDR frame.

When using SoC (FPGA+CPU) we have the opportunity to receive the image with
high dynamic range and minimum time delay, available for secondary processing
in CPU.

5.2. MODULES View

5.2.1. Hps_register module

In this project, a 32-bit “hps2fpga” bridge applies to implement external control of
video processing and initialization of camera registers. In the address space of this
bridge the HPS program transfers transactions to initialize internal FPGA registers
or camera control registers. Table 1 lists the addresses of the internal FPGA
registers. Parameters from these registers are used for remote control of
algorithms for processing the video stream. Transactions received via the hps2fpga
bridge with addresses not listed in Table 1 are redirected to the
SCCB_camera_config module for conversion to the SCCB interface.

Table 1. Internal FPGA registers

75

Innovate FPGAS

byte3 byte2 byte1 byte0 address

No Name register HPS(offset) FPGA
1 addr_framebuffer_1 0x0 0x0
2 addr_framebuffer_1 Ox4 0x1
3 hps_switch 0x8 0x2
4 parallax_corr 0xC 0x3
5 select_initial_cam 0x10 Ox4
6 div_coef Ox14 0x5
7 shift_coef 0x18 0x6
8 matrix_coef[0][0] 0x1C Ox7
9 matrix_coef[0][1] 0x20 0x8
10 matrix_coef[0][2] 0x24 0x9
11 matrix_coef[1][0] 0x28 OxA
12 matrix_coef[1][1] 0x2C 0xB
13 matrix_coef[1][2] 0x30 0xC
14 matrix_coef[2][0] 0x34 0xD
15 matrix_coef[2][1] 0x38 OxE
16 matrix_coef[2][2] 0x3C OxF
17 start_write_image2ddr Ox3fffc Oxffff

5.2.2. SCCB_camera_config module

To get the video stream from the cameras, the HPS program loads the initial
configuration into the camera registers using the Serial Camera Control Bus
(SCCB) interface over the hps2fpga bridge.

At the stage, the parameters are set in the control registers of both cameras to
output frame in RAW format with a resolution of 1280x720. The HPS package
contains a 2-byte register address and one byte of data to write to the camera's
control register at this address.

At the stage of adjusting the output of the frames processed by the HDR algorithm
to the display, the exposure level for each camera is adjusted separately.

5.2.3. Convert2avl_stream module

Two asynchronous streams of video data at a frequency of a pixel clock each
arrive at the input of the module from gpio pins. The main goal of this module is
the synchronization of the two streams with the transition to the system frequency
and data output via the avalon_stream interface. The module also counts the
difference between HREF strobes. To prevent the increasing of this difference in
the gaps between these strobes , the frequency decreases by 1 MHz for that
camera, the data from which begin to advance data from another camera by more
than the length of one line. This solution ensures stable synchronization of the two
streams throughout the entire operation of the camera. An example of the
synchronization of the two flows is shown in Fig.7.

76

/_\
Innovate FPGAS

difference between
streaLn;
VSYNC oﬁ
D oj7:0] ‘ ‘ N.
INPUT VR | s
D _1[7:0]
sys_dlock
raw_valld
raw_data_0 0 X 1 X ----- ~X127’9X
OUTPUT A
raw_data_1 X o X1 X - 1279
raw_sof / \
raw_eof /L

Figure 7. The example of the synchronization of the two flows

5.2.4. RAW2RGB Data processing module

Camera transmits to FPGA a RAW data stream, which should be converted to
RGB color space, so one of the problem we needed to fix in our project is a row
data processing, receiving from camera.

Modern image sensors are arranged this way: each pixel sensor contains the
information of one color (Red, Green, Blue) as a result of applying a two-
dimensional color array to the image sensor, which receives only luminance. It
calls a Bayer filter.

Figure 8. Bayer filter put on the image sensor

In order to get the usual image in RGB format, we need to process the raw data
from the photo matrix. There are several ways to get an RGB image, the most
common is

77

Innovate FPGAS

e receiving RGB image directly from camera, but camera module contains
non powerful controller, that reduces FPS, and data conversion takes a
long time

e real-time data conversion in FPGA (this way is the most suitable for us).

The method of bilinear interpolation is used for debayering. Colors for pixels are
calculated as follows: for each pixel there are surrounding pixels of the desired
color, and their values are averaged.

There are 4 possible states, requiring different arithmetic operations to get colors.

e even line + even column (for example pixel 7)
G7=GT7;
R7 = (R2+R12)/2
B7 = (B6+B8)/2;

e even line + uneven column (for example pixel 8)
G8 = (G7+G3+G9+G13)/4;
R8 = (R2+R4+R12+R14)/4;
B8 = BS,;

e uneven line + even column (for example pixel 12)
G12 = (G11+G7+G13+G17)/4;
R12 = R12;
B12 = (B6+B8+B16+B18)/4;

e uneven line + uneven column (for example pixel 13)
G13 =G13;
R13 = (R12+R14)/2;
B13 = (B8+B18)/2;

To control switching arithmetic operations the FSM is realized in RAW2RGB DATA
PROCESSING MODULE.

To implement the bilinear interpolation method, we need to operate on a 3x3 matrix.
To practice this feature in FPGA we use 3 FIFO connected one after another (pipeline).

The input of the first FIFO receives data from camera. FIFO outputs are connected to
the shift registers. Thus, the matrix, necessary for calculations, each system clock is in
the shift registers.

The latency is the time required to fill 3 FIFOs. After receiving three lines, each
system clock new RGB data appears on the output of the RAW2RGB module.

78

Innovate FPGAS

Figure 9 shows the functional scheme of the RAW2RGB module.

‘ [shreg shreg shreg
— RAW—> —p| | —p switch FSM
FIFOO | 00 *"o1 [o2 ‘
‘ Reg11 ! R+ &
& > L
n ; = =R | (Reg00+Reg 02+Reg x
L FIFO 1 [gpeag] i) fnreg| L___20+Reg22)/a bl
[10 | 11 [12 [(Reg 01+Reg 10+Reg e
T 12+Reg 21)/4 —G—+» T
5 | [(Reg01l+Regi0+Reg @
L FIFO 2 ; shreg | . shreg '\ g shreg 12+Reg 211/4 124
| 20 21 | [Z:Z2 — (Reg 10+Reg 12)/2
> ——B—1»

—— (Reg 01+Reg21)/2

Figure 9. The functional scheme of the RAW2RGB module

When this Module is implemented, the following advantages of FPGA are obvious:
is the parallel conversion of two data streams, receiving from each camera. If
desired, we can increase the number of cameras, not losing device’s operation
speed.

5.2.5. Gamma_correction module

Gamma correction, or often simply gamma, is a nonlinear operation used to
encode and decode luminance or tristimulus values in video or still image
systems. Gamma correction is, in the simplest cases, defined by the following
power-law expression:

I":mf = AVW

in

It is too difficult to realize calculations of floating-point numbers and
exponentiation operations in FPGA, so these operations are realized in CPU.

Gamma correction is realized this way:

In GUI User chooses coefficients, allowing to correct/change gamma values. This
parameter is transmitted via UDP-protocol to SoC (ARM Part)

ARM calculates complex arithmetic i.e. fractional power an array of numbers, the
result is rounded to integers.

Resulted data is written to the common ARM+FPGA memory

In FPGA data-streams from cameras are transmitted to the memory-address-bus to
be subjected to gamma correction. As a result we have an updated data streams on
the memory-address-bus output.

79

Innovate FPGAS

Gamma correction is performed for each camera. It allows us to improve the
quality of the HDR algorithm, since we can adjust the brightness of the image
more flexible.

Above the advantage of SoC (FPGA + CPU) is illustrated. CPU calculates
complex arithmetic, then the result is used by FPGA, in several parallel blocks.

Figure 10 shows the Gamma_correction module scheme.

Figure 10. Gamma_correction module scheme

5.2.6. Histogram_module

In image processing and photography, a color histogram is a representation of the
distribution of colors in an image. For digital images, a color histogram represents
the number of pixels that have colors in each of a fixed list of color ranges, that
span the image's color space, the set of all possible colors.

Usually, digital camera screen displays shows only brightness histogram (except

for expensive SLR cameras), but a color histogram of an image is available only

on the computer. Our project enables to construct a real-time color histogram for

each color channel, brightness histogram for each camera’s data-stream or for the
output stream, at the user's choice.

The histogram construction is divided into 2 parts: FPGA part and CPU part.

A module that contains 256 32-bit registers is described in FPGA. At the
beginning of the frame, the registers are set to zero, then the incoming data is
analyzed and the register which number is equal to the value on the data bus is
incremented.

80

Innovate FPGAS

When the frame is ended, the registers have the values necessary for plotting the
histogram.

In C/C++ programming language, a function is implemented that initializes a part
of the framebuffer so that a histogram of 200 by 256 pixels is displayed in the
lower right corner of the screen.

Figure 11 shows the histogram_module functional scheme.

v +1 v 4 Reg 3

S —_ - — ARM —p-
& +1 v % Reg 4
4 41 ! Reg 5
A
Aa
b 1 & A Reg

Figure 11. The histogram_module functional scheme

5.2.7. Parallax_fix module

Parallax — changes of visible position of object relative to the distance background
in dependence of observer position.

At simultaneous output of images to the monitor from two cameras, which are
located as close as possible to each other and adjusted in the angle of elevation
and angle of rotation, without processing of incoming data, on the monitor will
receive two images with offset relative to each other horizontally. Look at this
picture, at least uncomfortable. Figure 12 shows “Fundamental parallax issue for
blending images from multiple cameras”.

81

/_\
Innovate FPGAZS

Diagram for
"fundamental parallax issue for blending images from multiple cameras"

Paul Bourke

Top view showing camera frustums, two
objects in the scene (red and blue circles),
projection planes (green) and where the two
objects appear on the projection planes
(basic pinhole camera perspective optics).

it Q

Projection planes

Zero parallax point
Cameras

Images from each camera showing where each object appears with respect to the
other.

oo oo

Camera | Camera 2

The only way the two camera views can be perfectly blended together is if they share
the same zero parallax point. Otherwise the best one can hope for is to blend at a
particular depth.

000 000

Camera | Camera 2 Camera | Camera 2

Figure 12. Fundamental parallax issue for blending images from multiple
cameras

82

Innovate FPGAS

The Fix_paralax module is implemented to tackle this effect.

Main idea is that the images are displaced to each other, but their biggest areas are
intersected, that means that it is necessary to align them. This can be done by
discarding the edges of the frame, leaving only the common part of images of two
cameras.

Figure 13 shows the two images with offset relative.

Discarding
area

Discarding
area

—»Ne——

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Figure 13. Two images with offset relative

In FPGA this method is realized as follows.
e Incoming lines are recorded into FIFO.

e The line form the right camera is recorded from the first pixel up to pixel
1280-N (1280 — number of pixels in the line).

e the line from the left camera is recorded from pixel N up to the last pixel.

e The value N — pixels amount between two images frames, and depends on
the distance to the subject and the distance between cameras.

e After the parallax is fixed, the image is reduced by the number of pixels N,
and the discarded pixels are filled with zeros.

On the screen, this appears as a narrow black stripe at the edge of the screen.

For each various constructive execution of such a system, this parameter will have
different values, in our case N=50, which is not noticeable when the number of
pixels in the line is 1280.

In our work, we use cameras with a sufficiently large size (physically) and do not
have the physical ability to place them close enough to each other, so the parallax
effect influence the image more strongly than in the case of using more compact

dual cameras (as in modern smartphones) and placing them as close to each other.

83

/'\
InnovateFng

These difference are shown on the Figure 14.

Figure 14. Difference between cameras placing

When using compact dual cameras, the parallax effect will have a much smaller
influence on the image quality. Figure 15 shows the parallax_fix module.

froii parallax_fix
raw2rgb_bilinear_interp_0
Data_0———> FIFO_O
7'y 7'y
wr_0 rd
Y
parallax_corr Last N To HDR_algorithm
from HPS — (N)_ e counters —rd» pixels >
zeroize
A
from Wr_l rd
raw2rgb_bilinear_interp_1 v v
Data_1 > FIFO_1

Figure 15. Parallax_fix module

5.2.8. Module of frequency correction

Our project uses inexpensive cameras, which have certain disadvantages, and one
of them is the difference in the pixel clock output frequency value.

When the same clock pulse XCLK is applied to the cameras with a frequency of
24 MHz, which is multiplied and divided by the user’s defined values in the
internal PLL of the camera module, the frequency of PCLK signals coming from 1
and 2 cameras to the input FPGA are not equal in between. This leads to the fact
that processing of each next frame will be out of sync at the time of their
admission to the FPGA input. This is unacceptable for our project, as the
processing of frames should be synchronized.

To solve this problem, we implemented a frequency tuning algorithm. Its essence
84

Innovate FPGAS

is as follows: the time between the beginning of the frame from each camera at the
FPGA input is analyzed, the critical value of the time interval difference between
the frames is fixed, and at this moment the frequency tuning of the “outrunning”
camera is made by reducing the XCLK clock frequency PULSE from 24 down to
23 MHz. When the frames are re-synchronized again on both cameras is fed an
XCLK clock frequency 24 MHz.

In this module we use one of the advantages of FPGA - the presence of built-in
PLL. Using PLL we can get almost any clock frequency. The ability to operate at
different frequencies is important to work with different peripherals, improving
performance and reducing energy consumption. Without the ability of the
frequency dynamical change on the operating device, our project can not be
implemented due to imperfections of the cameras.

5.2.9. HDR_algorithm module (the algorithm of HDR processing)

Our work does not imply the creation of a new data processing algorithm to
produce HDR, so we used the popular algorithm created by Paul Debevec. The
theory of this algorithm can be found in (p. E. Debevec and J. Malik, “Receiving
high dynamic range radiance maps from photographs,” in Proceedings of the 24th
annual conference on Computer graphics and interactive techniques (SIGGRAPH),
1997, pp. 369-378.).

In this work we have simplified it and implemented it in FPGA. The simplified
theory of the above algorithm is presented in the description below.

ZEJ' - f(Ei*l?p]

Where

Ei - is the irradiances,

Zij - is the pixel value of pixel location number i in image
Atp - is the exposure duration.

The function g is defined as g =1n f —1.

We get data from the camera after gamma correction, so we can average the data
from the cameras with weights calculated for them, without the use of a
logarithmic function

P
Ep=] w(Z?'-j.:') Z?lju
P
Z}}:l W(Z?'-p)

In F; =

85

Innovate FPGAS

It =

1{ } . & — Zm;n f(}[= 3 {tht —l_ ZHH’EJ!}
)= anm: -z for = =1 {Z?Fi'f-?t + chm:}

v

¢

Where o(z) - is the weighting function.

It is a simple hat equation corresponding to the weighting function w(z)

This algorithm has no feedbacks and can be implemented as a conveyor, which
makes it convenient for implementation in FPGA rather than in CPU.

e Data from the module input is fed to the submodule input to calculate the
weighting coefficients w0(z) wl1(z). In parallel with the module of
calculation of coefficients of the data are delayed in the shift register for
the time of calculation of the coefficients.

e The weighting coefficients are summarized) w(z)

e The summary coefficient is multiplied with the delayes data Y w0(z)*Z0
dYwl(z)*Z1.
e The results of the multiplication are folded.

e In parallel, the summary coefficient is delayed for the time the sum is
calculated.

e The sum of the results of multiplying the input data by the summarized
weight coefficient is divided by the summarized weight coefficient and is
sent to the module’s output.

Figure 16 shows the functional diagram of HDR_algorithm module

HDR orithrr
—_— (Zmax+Zmin)/2
v
. » true —» Z-Zmin
» false —» Zmax-Z
From J line delay — d > mult0 ;
parallax_fix_0 !
I _Tix_| v v
line divide
summ > summ —» = >

delay r
A i 'y To tone_mapping

From —r—+ > line delay [= » mult0

— (Zmax+Zmin)/2 7‘
v
il < »{ true »7%‘ Z-Zmin | -

>

false » Zmax-Z

Figure 16. Functional diagram of HDR_algorithm module

Thus, each tact of the system clock on the module input with the description of the
algorithm receives information about the pixel, and each tact of the system clock
on the output is set to the value processed by the algorithm.

86

Innovate FPGAS

The advantage of using FPGA in this module is the parallel processing of two data
streams: simultaneous calculation of weight coefficients eliminates the need to
store data, everything takes place in the stream.

5.2.10. Tone mapping

Tone Mapping - is a technique is used to convert an image from an extended
dynamic range that cannot be represented on a computer monitor screen to a more
limited range.

To implement the algorithm, we used the following formula

" IUSU + T]_ IDg“min + T]‘
log(Imax + 7)—10g(Imin + T)

DU) = {Dmax _Dmin)

min

Where D — is the displayable luminance

Ei — a radiance value of the HDR frame

Ei(min) and Ei(max) — are the minimum and maximum luminance of the scene
T — is the overall brightness control of the mapped image

e The data is coming to the input of the submodule min_max_detector,
where the minimum and maximum values of the current frame brightness
and their difference are searched, at the end of the frame they are saved
for use in the processing of the next frame.

e The minimum value is subtracted from the input data.

e The difference is divided by the difference of the maximum and minimum
values.

Due to the fact that the video stream is processed in real time, Imin and Imax
cannot be used for the current frame, so the assumption is that the brightness
between frames does not change dramatically, and the Imin and Imax values for
the current frame are taken from the previous one. For the first frame, Imin and
Imax are initialized to the minimum and maximum values. Dmin equals 0, Dmax
255, r=0.

Figure 17 shows the functional diagram of the tone mapping module.

87

Innovate FPGAS

tone_mapping

MIN MAX -
»| (max - min)
detector

From
HDR_algorithm \
—_— min
v .
Divider To filter
(data_min_diff_mult)/ ——»
(max - min)

Substractor | data_min_diff multiplier data_min_diff_mult
‘—data—> (data-min) —— > (data_min_diff ————»
‘ *255)

Figure 17. The functional diagram of the tone mapping module

5.2.11. Filters based on convolution matrix [1]

In our project we implemented a filtering module. This module demonstrates the
capabilities of the FPGA for stream filtering of the image from noise, obtaining
effects such as the presence of edges of objects, blur, sharpen images, etc. These
filters are necessary for secondary treatment in CPU in the implementation of the
fundamental operations in computer vision, pattern recognition, etc.

The filter implementation algorithm is based on the convolution function. In non-
mathematical terms, convolution - is the transformation of one matrix by another,
which is called the kernel.

When processing images, matrixes of RGB pixel channels in rectangular
coordinates act as the source. Changing the kernel of the matrix, we can get effects
such as blur, sharpen, edge detection, emboss and others. Figure 18 shows an
example of calculating a single pixel when overlaying a matrix containing a unit at
position 01

35 |40 |41 (45 |50

40 |40 |42 |46 52 0|1|0
]

42 |46 |50 (55 55 0 42
L

48 |52 |56 |58 60 o|0]|0

56 |60 |65 (70|75 l

Figure 18. Example of calculating a single pixel when overlaying a matrix
containing a unit at position 01

The calculation of the pixel value is represented in the formula.
(40*0)+(42*1)+(46*0)+(46*0)+(50*0)+(55*0)+(52*0)+(56*0)+(58*0) = 42

In our project we use the kernel of a 3x3 matrix, it is stored in registers and can be
updated from HPS. To use the 3x3 kernel, we need to operate with a part of the
3x3 image.

88

Innovate FPGAS

To implement this feature in FPGA we use 3 FIFO connected one after another,
the input of the first FIFO receives data from cameras or after HDR processing.
The outputs of the FIFO are connected to the shift registers depth 3.

The FIFO’s recording and reading is made simultaneously, and after the first three
lines of the FIFO are filled in, the shift registers will have a new value of the 3x3
part of the image. This processing can not be applied to the edges of the image, so
we pass them to the output unchanged.

The multiplication of the input image area to the matrix kernel is performed in one
clock in 9 parallel multipliers. Summation of multiplication results is organized in
a conveyor belt to achieve maximum frequency.

The filter modules are separate for each color component, and the calculations
take place in parallel. If necessary, you can apply a filter to a separate color
channel.

Figure 19 shows the functional diagram of the filter module

m tone_mapping ! i
i L | shreg| |[shreg | shreg
T > i 4 oo] 01 [T 02

L L. i | shreg \‘7 shreg | shreg
4 FIFO1 A 200 [T a4 e

Titer

. shreg | - shreg shreg

ke £1E0 2 20 | 21 2:2

v

To SDRAM controller

parallel " pipiline

shreg shreg X ‘ 2
01 02 . L
' 1

v v

shreg shreg shreg
10 3 lin | 12
a 3 A

- O \ 4 A 4
shreg | shreg shreg
| 20 | 21 22

shreg
00 |
A

From HPS

Figure 19. Functional diagram of the filter module

5.2.12. Sdram_write module

To write any data to the shared memory DDR for HPS and FPGA, it is necessary
to allocate a space of continuous physical memory at the Linux kernel level. For
this purpose the module of the kernel sdram module hdr.ko was written. After
insertion into the kernel this module allocates in DDRmemory two buffers.

The size of each buffer - 4 MB. Then the module transfers the initial address of
these buffers to write them in the registers of the FPGA with number 1 and 2 into
the address space of the bridge hps2fpga.

In this project, the kernel-allocated memory serves as a framebuffer to output the

89

Innovate FPGAS

processed HDR video stream to HDMI.

The processed RGB components are written to DDRmemory at the frequency of
the camera.

Odd frames are written to the first buffer, even frames are written to the second
buffer.

The total number of bytes of a frame required to write a frame is 2764800 bytes.
Data transfer is carried out by bursts of length 32 over the bridge fpga2sdram. In
total, the transfer of the frame takes 14,400 bursts.

After the current frame is written to the memory buffer, the read module
sdram_read is given permission to read the new buffer. Before sending to the
SDRAM controller the RGB the components are packed into 64-bit words and
written to FIFO to eliminate data loss as a result of the change of signal
waitrequest. The format of the 64-bit word is presented in Table 2.

Table 2. The format of the 64-bit word.

Byte7 Bytet Byteb Byte4 Byte3 Byte2 Byte1 ByteO
Zero b_comp(i+1) g _comp(i+1) r_comp(i+1) zero b _comp(i) g_comp(i) r_comp(i)

5.2.13. Sdram_read module

Sending requests for reading a line from DDRmemory begins after receiving from the
HDMI_tx signal line_request. The width of the bus of the data interface
fpga2sdram_read is 32 bits.

In order to read one line it is necessary to have 16 bursts. Each burst has a length of
80.

The timing diagram for reading data from DDRmemory is shown on the Figure 16.
The format of the 32-bit word is given in Table number 3. Switching between buffers
in the memory DDRtakes place only after receiving confirmation from the
sdram_write module that the new frame is completely loaded into the buffer .
Otherwise, the previous frame for the module HDMI_tx will be read again.

Table 3. The format of the 32-bit word.

byte3 byte2 byte1 byteO
zero b _comp(i) g_comp(i) r_comp(i)

Figure 20 shows the timing diagram for reading data.

90

/f""_--‘-..-‘_
Innovate FPGAS

B 730

ssress)) =) B |
burs._souni__) =X e X
vt _____| L/ L L

Figure 20. Timing diagram for reading data.

5.2.14. HDMI TX module

The ADV7513 High Performance HDMI Transmitter is installed on the Terasic
DEO-Nano-SoC developer Kit, that allows us not to implement Physical level of
HDMI by FPGA. We only need to transmit signals (strobes), which the transmitter
requires (HSYNC, VSYNC, DATA ENABLE). It simplifies the implementation of
video output on the screen. The necessary information of strobes duration time can
be found in CEA-861-E standard.

Figure 21 shows the output waveform of HSYNC, VSYNC, DATA ENABLE.

" EE 4
Data \
Enabla
MEGr T Factivg
He
Hrrm't_l,_T’_l"ﬁ_a.m
HEYNG l_| |_|
F Feeld T Voarsil.s V=T .

Tag Line

o i s i || N 1
T TTTTTIT T TTIT

1 =1 | o]

WETHE

Figure 21. Output waveform of HSYNC, VSYNC, DATA ENABLE

91

Innovate FPGAS

HDMI TX MODULE contains several counters, generating strobes duration
required. Before the new line HDMI TX module requests data from the SDRAM
controller module to send data to the screen.

This data, received at the system frequency into the HDMI TX module, resync in
FIFO HDMI TX to the ADV7513’s necessary frequency and, accompanied by
strobes, follow to the ADV7513.

One of the advantage of FPGA, which can be realized in HDMI TX MODULE is
the possibility of using another receiver.

We implemented this project with the ADV7513, but, if necessary, it’s possible to
transmit video by the other interface, including the physical level (to reassign the
input and output pins and voltage standards).

V. Performance metrics / goals

To realize our idea we have employed almost all the elements available in the SoC:
e memory blocks;

e DSP blocks;
° PLL;
e HPS;

e DDR controller;
e ethernet controller.

Basically, we can describe these blocks (above) via Verilog manually, but due to
the fact that these blocks are realized in SoC (basic), we get a significant system
performance advantages and save resources to implement more other features

FPGA resources
Figure 22 shows the comparison between the limited/utilized FPGA resources.

92

/_\
Innovate FPGAS

Quartus Prime Version 17.1.0 Build 590 10/25/2017 SJ Lite Edition
Revision Name FPGA_rtime_HDR_video
Top-level Entity Name FPGA_rtime_HDR_video_top
Family Cyclone V

Device 5CSEBABU23I7

Timing Models Final

Logic utilization (in ALMs) 3,332/41,910(89%)

Total registers 6450

Total pins 178 /314 (57 %)

Total virtual pins 0

Total block memory bits 549871 /5,662,720(10%)
Total DSP Blocks 18/112(16 %)

Total HSSI RX PCSs 0

Total HSSI PMA RX Deserializers O

Total HSSI TX PCSs 0

Total HSSI PMA TX Serializers 0

Total PLLs 2/6(33%)

Total DLLs 1/4(25%)

Figure 22. The comparison between the limited/utilized FPGA recources

Resolution (video quality)

We are aimed to get an HD video with 1280x720 resolution. This resolution is
chosen to get an optimal “extension/fps" ratio. That was succeed in our project.

Design performance

In our project we use two cameras, getting data according to the waveform below.
Figure 23 shows the camera interface data transmitting timing diagram.

VSYNC '—|

|
| ! i | ||..(—1.J.

| |
I el i

HREF | |_| |
I (6) P—' I_()(’_I '

® ©)

|:F‘F i L’H‘F «

S i al
| |
.
| |

Do) el gaia IR =)

Figure 23. Camera interface data transmitting timing diagram

Data is transmitted in case of “HREF” is high. In case of “HREF” is low the
pipeline is out of valid date.

We have measured FPS, using oscilloscope. Figure 24 shows VSYNC pulse
period. As we can see, pulse period is 40ms, it means that our system performance
is 25 FPS.

93

VI.

/_\
Innovate FPGAS

Tek Run

10.0ms 10.0kS/s e / 6 Jul 2018
§§-+v100.0000ps 1000 polints 780mV 07:17:00)

Figure 24. VSYNC pulse period

To estimate the design performance and effectiveness of our project we should
consider the ideal case which is not possible while using widely used modern
cameras ("HREF" is high always).

In our project FPGA system clock is 100MHz, data bus width from each cameras
is 8 bit. Thus, we process the common data stream from two cameras with the
speed 1.6 Gb/s.

100*1076*8*2 = 1.6*10"9bit (1.6 Gb/s)

The one of the main part of our project is to process HD video streams are
received from 2 cameras, which is realized not achieved the FPGA performance
limit.

We can estimate the FPGA performance limit according to our project.

Time Quest report shows that maximum system clock value of our design is about
130MHz. We can achieve the system clock more than 150MHz via several not
difficult optimisations. Thus, we can process the 2.4 Gb/s data stream.

150*1076*8*2 = 2.4*10"9bit (2.4 Gb/s).

Design Method

The uniqueness of the project implementation is in the next: nowadays a lot of
devices are programmed to get an HDR video using only one camera processing

94

Innovate FPGAS

data in CPU.

In our project to realize the HDR real-time HD video we have used two cameras
streaming video simultaneosly. The HDR data processing algorithm, we have
implemented in the project, is based on the way of several cameras using.

IIn our work this algorithm is realized in FPGA - that is the uniqueness of the
project, because the FPGA is not common to aplicate to such tprojects types.

The functional diagram of FPGA design, is demonstrated the mutual arrangement
of modules, is shown on figure below (fig.25).

i HPS space '
1
. . . 1
i1 hps2fpga bridge Iwhps2fpga bridge ’ fpga2sdram bridge -
1 e —
;) , ™ s+—1s] (s} :
' A '
P o o
er 3 3
jmmmm——— [NN NN NN N N N NN N NN NN NN NN NN NN NN NN NN NN N NN NN NN RN NN NN NN NN NN NN NN NN NN NN NN SN NN BN g S SN SN --y
:2x20pm: 1 <1 M- []
1 GPIO ! 1 = S| sdram 1
' ; : hps_register man%mma read :
! se 2
! L ol $iir] o o2 A) 1
1 : 1 SCCB camera :’E & E :
B H . d o4 bk
:SCCB.‘““’II | | E mem_avl ifc BELANE ‘ '.-: IE Ig é |
: SCCB _camas I R 4 |; f: E 2 1
: 4 i raw 0, Raw2rgh 5 6 > Z |
[l L 1 [227] [=3 bilinear — 3 % & 1
Ll i g - = 1
H 1 1 -~ > = interp N 7 'g B '; hist_switch :
[S0] g Q = rgb_hdr e HDMI] 2
[l 5 —]
: 1|8 (B B HDR > g . 4 x T3
1 = - =1 =
: i ! E e : S—— E conv -
T - S = > ° 1
: 1 b 2 E s, G 5 filter] —
: 11 2532 »E one —> o R 1
H [8 g = = pping rgb filter G 1
1 1 g = S = Y
1 —Y 11 = i B |2 { |
1 M:—I'P raw 1 Raw2rgb \ ‘ mgl’ —5<» hist calc 1
: o O . bilinear Y_comp ——» © 1
] : 1 interp ‘ [|
. i 1 1
' H | 1
. 1 1 FPGA part 1
1
:. _____ - L---J
Figure 25. The functional diagram of FPGA design
Description

We use two cameras, shooting video simultaneously, but with different exposure
(0 camera with low, 1 camera with high).

When the DE-nano10 is ON, “preloader” and “u-boot” run in the ARM.

U-boot updates FPGA firmware and passes control to the Linux kernel, and then
the system is ready-to-run. After that, user switches on the User Program. Now the
system is ready to use.

95

Innovate FPGAS

Cameras are initialized. Via the “User program”, the necessary data is recorded to
the modules on FPGA.

SCCB_camera_config module reads register values and transmits data to the
cameras via 12C data protocol.

After cameras are initialized, each camera transmits data to FPGA with different
frequencies.

In convert2avl_stream module data streams are resynchronized to the system
clock and the starts of frames are synchronized to be able to parallel data
processing.

Synchronized data streams are transmitted to gamma_correction modules, where
each data stream are corrected not depended.

Corrected data streams are transmitted to the fix_parallax module, where two
frames, received from two cameras, are shifted from each other to fix parallax.

The shift value are detected by parallax_corr signal, received from ARM.

Then via RAW2RGB _bilinear_interpolation module RAW data streams are
converted to RGB color space.

RGB data streams are transmitted to the HDR module.
Received HDR data stream can be optionally subjected to a tone_mapping module.

In case of indicating bit “enable” as “1”, incoming data streams are processed, in
case of indicating bit “enable” as “0”, incoming data streams are not changed.

LDR data streams from the 0 and 1 cameras, and HDR data stream, are
transmitted to the MUX1, controlled by the ARM-module. So, we can switch
between 2 cameras, or choose the HDR mode.

Data streams are transmitted from MUX1 to the convolution_filter. User chooses
the necessary filter, entering coefficients for the convolution matrix kernel.
Processed data are transmitted to the SDRAM_write module, which writes Data to
DDR3_memory.

Also data from convolution_filter are transmitted to Y _comp module (to calculate
brighhtness value from RGB channel) and MUX2, controlled by the ARM-module.
So, we can choose necessary histogram: color or brightness.

96

Innovate FPGAS

After user chooses type of histogram, required data stream (Y, R, G, B) is
transmitted to the hist_calc module to calculate histogram, values are written to
the FPGA+CPU common memory.

The module for data transfer via HDMI - HDMI TX interface requests data from
DDR3 memory through the module sdramread and transmits it to the screen.

The software flow is available by the link:
https://qgithub.com/sh-vlad/FPGA rtime HDR video

VIl. Conclusion

The main aim of the project is to realize HDR real-time HD video via Terasic
DE10-Nano KIT with Intel SoC (FPGA Cyclone V + ARM A9), that is succeed.

Also we have realized some features

Release_1 (31/05/2018). Realized functions:
HDR stream;

Additional filters as well as real-time video;
Tone-mapping;

PC remote control by "ethernet".

Release_2 (30/06/2018). Realized additional functions:
Gamma-correction

Real-time color histogram for each color channel, brightness histogram for each
camera’s data-stream and output stream

GUI is improved

SoC (FPGA) architecture flexiblility advantadges are encouraged us to work on
the project and improve the algorithms and the system, so we are going to improve
the project In the near future.

Starting our project, we were aimed to show practical implementation of our idea
by Intel FPGA. While realizing the project, it was found, that concept is working.
In spite of using cheap cameras, we have a really good result.

Now the FIFA World Cup Russia 2018 is taking place. We and millions people all
over the world are watching live broadcast of this Grand event.

Such events are shot via professional cameras with a best characteristics, costing

97

https://github.com/sh-vlad/FPGA_rtime_HDR_video

/_\
Innovate FPGAS

tens of thousands dollars. But even such cameras have significant disadvantages,
for example in cases of shooting objects, which are located against the light or low
brightness and high brightness zones simultaneously.

Figure 26 shows the screenshot of football match online broadcasting between
Costa Rica and Serbia, which has taken place a sunny day.

em\m-

| 2 Pl o 1:25/343

Figure 26. The screenshot of football match online broadcasting
between Costa Rica and Serbia

We can see that a lot of details, which are in bright area, are lost in the frame, and
this video broadcast was watched by millions spectators.

Figure 27 shows cameras’ dynamic range deficit.

98

/’_\
Innovate FPGAS

> » o o025/204

Figure 27. Cameras’ dynamic range deficit

We can see, that football player in white is almost disappeared from the frame, so
the viewer can miss important moments of the match.

So, even expensive professional premium quality cameras can't fix some problems
and transmit high quality real-time HD video, where all areas of frame and every
objects are clearly visible.

Avreas of our development application are not limited of tasks, which was set at the
start of the project, and class of cameras used. Our device is really good if
expensive cameras’ using is redundant, for example for high quality selfie-
cameras (1 premium quality camera much more expensive than 2 cameras with
standard characteristics), as well as good if we want to make live broadcasting
with excellent quality when using premium quality camera.

Future plans

As showed above, FPGA has a free resource, which we can use to improve our
project. We can

e connect more cameras to improve quality of HDR-stream;

e implement an HDR-stream compression algorithm to transmit data to PC
via “ethernet” protocol;

e implement feature, applied to save HDR-stream data to SD-card,
e increase FPS;
e add more other features.

We have a lot of opportunities to apply our project in wide areas:

e robotic platforms;
99

Innovate FPGAS

e dashcams;

e traffic/security cameras;

e live broadcasting from sport events by professional cameras;
e etc.

Follow our project on github, the latest features are there.

VI1Il. References

[1] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps
from photographs”, 1997.

[2] J. Duan, M. Bressan, C. Dance, and G. Qiu, “Tone-mapping high dynamic
range images by novel histogram adjustment,” Pattern Recognition, May 2010.

[3] Alexey Ignatenko “HDR image constructing by LDR images combining*.
Materials of lecture course “Basics of realistic rendering”. (RUS: Azrexceit
Uenamenxo "llocmpoenue HDR-uzobpasicenus no nabopy LDR-uzobpascenu’™.
Mamepuanwvt k nekyuam no kypcy "Ocnoswl cunmesa

gomopeanucmuunbix uzoobpaxcenui”).

[4] Dmitry Vatolin “Bayer-pattern interpolation”. Lecture course “Methods of
Media data compression”. (RUS: Jmumpuit Bamonun "Hnmepnonayus Bayer-
pattern". 13 xypca nexyuti « Memoowt cocamust MeOuadaHHbIX»).

100

