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I. High-level Project Description 
 

PipeCNN is an efficient FPGA accelerator proposed by our team that can be 

implemented on a variety of FPGA platforms with reconfigurable performance 

and cost. The PipeCNN project proposed by our team is openly accessible,you 

can get it on our github website: https://github.com/doonny/PipeCNN. We use 

the PipeCNN- an efficient FPGA accelerator to demonstrate the following four 

application designs: 

(1) ImageNet classification. ImageNet database was used and a number of five 

hundred pictures were processed on the test board. For AlexNet, the achieved 

classification speed is 110 ms per imagewe. 

(2) Object recognition via camera. we use a USB camera as a video input, 

interactively intercept a picture from the video, then parallel computing it on the 

DE10-NANO platform, the final real-time classification of the target object and 

display in the VNC interface. 

(3) Face recognition. In order to prove that our acceleration system is a 

universal model, in this section we use the VGG-Net network for face 

recognition experiments. 

(4) Object Detection. Finally, we apply our proposed accelerator in the object 

detection. We use Faster R-CNN Net to detect the target and draw it out. 
 

 
 

II. Block Diagram  
 
2.1 The device of our design 

The proposed DCNN accelerator was implemented on Altera Cyclone-V SoC-FPGA based 

DE10-NANO board. there are two parts in this project, in part 1,the ImageNet database was used 

and a number of five hundred pictures were processed on the test board. The average processing 

time was used as the final score. In part 2, we use a USB camera as a video input, interactively 

intercept a picture from the video, then parallel computing it on the DE10-NANO platform, the 

final real-time classification of the target object and display in the VNC interface. The device of 

our design as Fig.1. 
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Fig.1 The device of our design 

2.2 The top-level architecture of DCNN Accelerator 

As shown in Fig.2, Our design consists of a group of OpenCL kernels that are cascaded by 

using Altera’s OpenCL extension Channels. Two data mover kernels, namely MemRD and 

MemWR, transfer feature map and weight data from/to the global memory (i.e., the external DDR 

memory) feeding other kernels with high throughput data streams. The Convolution kernel (Conv.) 

is designed to accelerate the most computeintensive computations in CNNs, i.e., convolution layer 

and the FC layer. The Pooling kernel performs subsampling operations directly on the output data 

stream of the Conv. kernel. The Local Response Normalization (LRN) kernel fetches data from 

global memory and performs normalization on the feature map of neighboring neurons. 

 
Fig.2：The top-level architecture of DCNN Accelerator 

2.3 OpenCL-based FPGA design flow for DCNN accelerator 

There is a growing trend among the FPGA community to utilize High Level Synthesis (HLS) 

tools to design and implement customized circuits on FPGAs. Compared with traditional 

methodology, the HLS tools provide faster hardware development cycle by automatically 

synthesizing an algorithm in high-level languages (e.g. C/C++) to RTL/hardware. Fig.3 

summarizes the OpenCL-based FPGA accelerator development flow adopted by this work. 

Hardware circuits, which accelerate compute-intensive algorithms, are first modeled in OpenCL 

code in the form of kernel functions, and then compiled by HLS compiler to run on the FPGA 

fabric. A C/C++ code executing on the embedded CPUs provides vendor specific application 

programming interface (API) to communicate with the implemented kernels. This work uses the 

Altera OpenCL SDK to compile and profile the OpenCL designs on FPGAs. This toolset also 

provide the capability to warp RTL modules as C/C++ functions that can be instantiated inside the 

kernel. The designed host function initiates and launches the hardware kernels in a specific order 

according to the neural network configurations to accelerate the DCNN computation. 
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 Fig.3: OpenCL-based FPGA design flow for DCNN accelerator 

 

 
 

III. Intel FPGA Virtues in Your Project  
 
3.1 Flexibility and reconfigurability 

FPGA is a high-specification integrated circuit that can achieve unlimited precision functions 

through continuous configuration and splicing. unlike CPU or GPU, the bit width of  basic data 

types is fixed, FPGA is flexible. FPGAs provide flexibility to implement the CNNs with limited 

data precision which reduces the memory footprint and bandwidth requirements, resulting in a 

better energy efficiency.  

3.2 Parallel Computing 

Many computer vision applications using deep convolutional neural networks have proven to 

be effective, but they consume a lot of storage space, memory bandwidth, and computing 

resources, making it difficult to implement on embedded platforms.The FPGA broke the 

sequential execution mode and completed more processing tasks in each clock cycle. 

3.3 The features of our design 

(1)SOC: Our design uses ARM+FPGA heterogeneous computing to reduce the 

computationally intensive part of CNN operations. Convolution and FC layer use FPGA massive 

parallel computing resources to accelerate and ensure real-time performance. The data flow 

reading and display work on the ARM ensures the flexibility and scalability of the program. 

(2)Interactive: Using convolutional neural network for object recognition is generally given a 

picture, then the feature is extracted through convolution, finally the result is classified. In order to 

increase the practicality, we have an external camera on the DE10-NANO to intercept interesting 

objects in the form of video streams for classification. 

(3)Application interface: In order to have a better display of this design, we use the VNC 

virtual network console remote control. VNC graphical interface is very friendly, you can 

intuitively see the target object detection process and screen. 

3.4 The advantages of our design architecture 

(1)the cascaded kernels form a deep pipeline, which can execute a serial of basic CNN 

operations without the need of storing interlayer data back to external memory. It significantly 

relieves the demand on memory bandwidth which is essential for embedded FPGAs. 

(2) we use a single hardware kernel to implement both the convolution and FC layers 

which further improves the efficiency of hardware resource utilizations.                  
 
 

IV. Functional Description  
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In part 1,the ImageNet database was used and a number of five hundred pictures were 

processed on the test board. The average processing time was used as the final score.For AlexNet, 

the achieved classification speed is 110 ms per image as shown in Fig.4. 

 
Fig.4: The result of classification acceleration experiment of imageNet 

In part 2, we use a USB camera as a video input, interactively intercept a picture from the 

video, then parallel computing it on the DE10-NANO platform, the final real-time classification of 

the target object and display in the VNC interface as shown in Fig.5. 

 
Fig.5: The result of object classification acceleration experiment via camera 

 

In part 3, In order to prove that our acceleration system is a universal model, in this section 

we use the VGG-Net network for face recognition experiments as shown in Fig.6. 

 
Fig.6：The result of face recognition acceleration experiment based on VGG-Net 
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In part 4, Finally, we apply our proposed accelerator in the object detection. We use Faster R-

CNN to detect the target and draw it out as shown in Fig.7. 

 
Fig.7：The result of object detection acceleration experiment based on Faster-RCNN 

 

 

V. Performance metrics / goals   
 

5.1 Throughput Optimization 

To further improve the throughput of the convolution kernel, data vectorization and parallel 

CUs are introduced. As shown in Fig.8, the input features  and weights  at same the position (x, 

y) from adjacent feature maps are grouped as one vectorized input. The size of the vectorized data 

is controlled by the design parameter VEC_SIZE. The vectorized data streams are fetched by the 

MemRD kernel and send to multiple CUs in the Conv. kernel by OpenCL Channels as the colored 

line shows. The number of parallel CUs used is controlled by another parameter CU_NUM. 

Simply changing the value of the parameters VEC_SIZE and CU_NUM, the implemented design 

can achieve scalable performance and hardware cost without the need of modifying the kernel 

code. In the final design, two 8×8 multipliers were also grouped and mapped into one DSP block 

by manually inserting Altera’s IP blocks in the kernel code to improve the efficiency of the 

pipeline. 

5.2 Bandwidth Optimization 

To relieve the pressure on external memory bandwidth, we introduce a sliding-windowbased 

data buffering scheme. As shown in Fig.7, the filter stride S of the convolution window is usually 

smaller than the filter size K(in most cases, S =1). Therefore, a large portion of data can be reused 

during the convolution computation. To exploiting data reuse, the MemRD kernel fetches a 

window of data that covers the area of FT_NUM of convolution filters each time, and caches the 

data in the on-chip buffers. And then, for successive convolution filtering operations, feature-map 

data and weight are repeatedly loaded from local memories avoiding access of external memory. 

To demonstrate the effectiveness of this scheme, we profiled the DDR memory bandwidth of 

implementations with different values of FT_NUM on different FPGA platforms. The 

average bandwidth reductions achieved reached up to 50%. 

The proposed DCNN accelerator was implemented on Altera Cyclone-V SoC-FPGA based 

DE10-NANO board. The Cyclone-V SoC-FPGA consists of 110K logic elements(LEs),There are 

also an ARM Cortex-A9 dual-core processor. The OpenCL kernel codes were compiled by 

using Altera OpenCL SDK v16.0. A Perl script was designed to quickly perform the first-step 

compilation for multiple rounds with different VEC_SIZE and CU _NUM settings.  For a given 

device, the proposed architecture achieves the maximum throughput when the convolution kernel 

utilizes the highest ratio of DSP resources (we estimate that the bandwidth is sufficient). Therefore, 

the design space was automatically explored and the one that maximized the DSP utilization for 

the convolution kernel was selected to complete the second-step compilation. 
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Fig.8: Sliding-window-based data buffering scheme 

The final implemented design uses the setting of VEC_SIZE=8 and CU_NUM=16. Fig.9 

reports the hardware resource brakedown for the five OpenCL kernels. The Conv.kernel consumes 

64 DSP blocks, which is 79% of the total resource. The two data movers use a small amount of 

DSPs for address calculation. It can be observed from the data that our design successfully 

maximizes the DSP utilization while only consumes a small portion of the logic and on-chip 

memory resources. To measure the performance, the ImageNet database was used and a number 

of five hundred pictures were processed on the test board. The average processing time was used 

as the final score. For AlexNet, the achieved classification speed is 120 ms per image (i.e., 8.3 

img/s).  

 
Fig.9: Resource utilization of each kernel for AlexNet model 

 

 

 

VI. Design Method   
 

6.1 Convolution Kernel 

The convolution operation is essentially a 3-dimensional (3-D) multiply-accumulate 

(MAC) operation . In our design, we propose to implement by using a HLS-friendly 1-D 

convolution structure which flattened the 3-D convolution as follow: 

Do(fo) = ∑ Wl(fo, fi) ∙ Di(fi)

Cl×K×K

fi=1

 

In this way, nested-loops can be avoided in kernel code, and an efficient convolution pipeline 

structure consisted of a multiplier-adder tree with a delayed buffer is generated by the compiler as 

Fig. 10 shows. When an appropriate buffer depth is selected, the proposed structure can be 

efficiently pipelined by the OpenCL compiler with an initial interval of only one clock cycle. Each 

convolution pipeline constitutes a compute unit (CU) and the kernel consists of multiple CUs to 

perform parallel convolutions. 
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Fig.10: The hardware architecture of the convolution kernel. 

6.2 Data Mover Kernels 

Two multi-mode 3-D NDRange kernels are designed to fetch/store data from/to the 

global memory for the computation pipelines. Data and work-item mapping schemes are 

illustrated in Fig. 11. 

 
Fig.11. Data and work-item mapping scheme of the data mover kernels 

6.3 Pooling Kernel 

In our design, the output data stream of the convolution kernel are directly subsampled by the 

Pooling kernel before writing back to global memory. A line-bufferbased hardware structure is 

proposed for the pooling kernel as shown in Fig. 12. The kernel first reads data of the same feature 

maps in a line-by-line manner from the Channels and then stores them in a group of L line buffers. 

After all buffers are fully filled up, a pooling window of K’×K’ feature map data are read out and 

send to the next stage with pooling logics. In DCNNs, two pooling schemes, i.e., max-pooling 

and average-pooling, are widely used. Therefore, the pooling logic modules support either 

selecting the maximum or computing the average value of the (L+1) inputs. The kernel can also be 

by-passed by setting a control register when a pooling layer is not required after the convolution 

layer.our pooling kernel design can significantly reduce unnecessary kernel-memory data transfer, 

and save the limited global memory bandwidth for convolution and FC layers when implemented 

on embedded FPGAs.  

 
Fig. 12. Line buffer-based hardware architecture of the pooling kernel (L = 2) 

6.4 LRN Kernel 

Due to the wide data range required by the square and exponent operations, the LRN kernel 

uses floating-point data format. A piece-wise linear approximation scheme  is adopted to  
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implement the core exponent function of the LRN kernel. We improve this scheme by introducing 

a new lookup table segmentation scheme to reduce the hardware costs . In this new method, the 

function evaluation range is divided by using a variable interval of 2−nx , where x is the input 

index and n is an integer that controls the approximation accuracy. The approach avoids 

complicated table addressing logic by directly operates on the exponent of the input. The hardware 

parameter Shift_Bit is determined by the segmentation parameter n. For AlexNet model, a 

maximum approximation error of 0.5% can be achieved by setting n = 2. 
 

 

 

VII. Conclusion   
 

7.1 The introduce of DE10-NANO 
Table.1 The introduce of DE10-NANO 

FPGA Device Intel CycloneV SE 

5CSEBA6U23I7N 

ARM  Processor Dual Cortex-A9 

Logic Elements 110k 

SDRAM 1GB DDR3 

SRAM 64KB 

Etherent Gigabit 

FPGA Expansion 40-Pin GPIO x2 

7.2 Comparision with software accelerator on mobile CPU/GPU 

Table.2 compares the performance and power consumption of the proposed design with 

software-based DCNN accelerators on mobile CPU and GPU. AlexNet model was used as a 

benchmark for all platforms. We report the power consumption by two categories, i.e., effective 

power and system power. The effective power refers to the actual power spent on DCNN 

computation and is calculated by subtracting the standby power from the total system power. 

To measure the power consumption of the proposed design, an external power meter was directly 

connected with the power supply of the DE10-NANO board. The average power consumption of 

the board was measured as 1.6W after Linux system boot, and as 2.1W while performing 

image classification. The results show that the proposed design achieves 170× and 4× 

speedup compared with the software accelerator on mobile CPU and GPU, respectively. The 

power consumption of the our design is very similar to the mobile GPU. 
Table.2 the performance and power consumption on mobile CPU,GPU and FPGA 

Platform Frequency Time Effective 

power 

System 

power 

ARM Cortex 

A57 CPU 

1.9GHz 20,767ms 2.4W 4.1W 

Mali-T760 

GPU 

700MHz 482ms 0.52W 2.3W 

Cyclone V 

SoC-FPGA 

140MHz 110ms 0.5W 2.1W 

 

7.3 Conclusion 

This work presents a resource-efficient OpenCL-based FPGA accelerator for deep 

convolutional neural networks. A new architecture of deeply pipelined kernels with special data 

reuse and task mapping schemes are proposed. When implemented on a Cyclone-V  SoC-FPGA, 

the proposed design achieved 4× performance improvement over start-of-the-art software 

accelerator on mobile GPU. The evaluation board only consumes 2.1W power while running 

AlexNet DCNN, which is similar to the GPU platform. Therefore, the proposed design is suitable 

for power-aware embedded applications like wearable devices, autonomous robots, microUAVs  
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and IoT systems. As the DSP resources on low-power embedded FPGAs are commonly limited, 

future works can be conducted to develop multiplier-free hardware architectures by using 

binarized DCNN model. 
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