

69

EM 076

Real-time HDR video

Team members: Vladislav Sharshin, Andrey Papushin, Yelena Kirichenko /

Independent Team

I. High-level Project Description

In today’s world, it is very important to keep up with the times, not to lose sight of

significant events, to follow the current news and know what is happening around.

In very rare cases a person can be present personally at the place of events and

view the happenings, but the technologies of 21st century allow us to receive up-

to-date information being at home.

The usual and most informative way for us to observe the outside world is TV

reports and video broadcastings from the place of the most significant events.

Online broadcasts and live reports can be called the most exciting and fascinating

way of observing, for example the start of a new international expedition to the

ISS, a football match, a scientific experiment, an observation over animals in wild

nature and so on. Of course, the real time view the happenings on the other end of

the globe captures us.

One of the main tool of perception and study of the world around for a human are

eyes. In case of fast change of images, the human eyes are capable to adapt

dynamically to happenings, depending on the situation, to compensate an

imbalance of different items brightness.

The human eye considerably exceeds the modern cameras and it is impossible to

transmit the image through the technical devices so as the person would see it.

One of the main disadvantage of image sensors of the modern available video

cameras is the dynamic range (our eyes are capable to perceive the dynamic range

about 10-14 exposure steps that completely covers he dynamic range of most

compact cameras (5-7 steps) – it means that the camera can transmit image details

either in dark or light colors.

High Dynamic Range (HDR) is applied to eliminate this disadvantage. In order to

receive a wider dynamic range several images, captured at different exposures, are

combined to produce a single image containing details from all source images in

both extreme shadows and maximum lights.

Below is a picture showing the difference between dynamic range of the human

eye, standard camera and the image received with the using HDR technology.

70

Figure 1. Difference between dynamic range of the human eye, standard camera

and the image received with the using HDR technology

Nowadays video with HDR technology is practically not applied, unlike the photo,

but gains popularity. For HDR-video a standard approach is used that works well

for photo but has its disadvantages when shooting video. At this approach a single

camera is usually used and HDR-video is made as a result of cyclic repetition of

the following actions:

 shooting of the first frame

 exposure reorganization

 shooting of the second frame

 combining of two images

This approach has two main disadvantages: it leads to a significant reduction of

shots number per second, and if the subject moves the image will be blurred as the

subject relocates during the exposure rearranging.

This method considerably complicates the implementation of such tasks as, for

example, slow motion video in HDR mode.

In our project we have implemented a merge of two video streams with the low

dynamic range resulting in HDR video in real time. Usage of the Development Kit

Terasic DE10-Nano KIT with Intel SoC (FPGA+ARM A9) Cyclone V for data

processing allowed us to eliminate above disadvantages.

II. Block Diagram

The main idea of our work is application of HDR technology to improve color

reproduction quality while video streams, displayed on the monitor in the real time, when

shooting of video in backlight (the light source is behind the subject), shooting objects

located in different light zones (shadow/intensive light), shooting fast moving objects.

71

To implement HDR real time video technology, excluding disadvantages, that are

presented at a method a single camera used, we chose two identical cameras to shoot

video simultaneously, but with different exposure (1st is low, 2nd is high).

Figure 2 shows the Block diagram of the device.

Figure 2. Block diagram

The cameras transmit image to Intel FPGA, where the uniform image is formed by

means of mathematical algorithms for data processing. If desired, various filters

(edge detection, blur, black and white, “three-dimensional image”) are applied to

the resulting image and the tone correction algorithm is applied.

ARM processor is used to control camera modules, FPGA design and host PC

communication, and allows us:

 to set the required resolution and exposure values for each camera;

 to receive an image separately from camera 0 or camera 1;

 to enable / disable HDR mode, etc.

Figure 3-4 shows the device prototype.

72

Figure 3-4. The device prototype

III. Intel FPGA Virtues in Your Project

The main idea of HDR real time video producing via FPGA is a parallel data

73

processing. The data comes from two cameras simultaneously. So we need all the

calculations is parallel.

Thanks to implementation of both the parallel architecture and pipeline, Intel

FPGA enables to make this process more efficient than CPU.

For example, we describe RAW2RGB conversion module in Verilog, then we

implement module copies to FPGA, where data from the 0 and 1 cameras are

processed. If it's necessary, we can connect 3-4-10 cameras, and even in this case

RAW streams from all cameras will be processed and converted to HDR-stream

simultaneously.

We have a necessity of application pipeline method for data flow processing.

Calculations in modules occur one after another without feedbacks. The modules

are also connected one after the other to the pipeline. The data stream is input and

set to the output (after some of latency) without interruption.

For example, N-line processed is outputted to the monitor, N+1-line is processed

via HDR algorithm, and N+2-line is input and converted from RAW to RGB, -

and all these are happen simultaneously.

We have a possibility to rearrange an FPGA design. We can:

 replace cameras on any other;

 replace the HDMI signal receiver with, e.g., TFT display without using

additional chips by connecting a new receiver to Intel FPGA pins and

altering FPGA design;

 reassign the input and output pins and voltage standards, etc.

All features described are impossible, when the ASIC or CPU are used.

The structure and logic of our project is based on the FPGA virtues, which provide

good opportunities to improve the system and algorithms.

It’s possible to expand the project using Intel FPGA. Additional filters can be

applied if needed, as well as real-time video.

To Improve the project performance we are going to replace the camera modules

with more productive ones and increase their amount. Thanks to FPGA features,

there is no need to rebuild a PCB, make additional purchases. The only change is

to adjust the code of the input module is a connecting to the new sensors.

IV. Functional Description

5.1. Operating principle of the system

74

The functional diagram of FPGA design demonstrating the mutual arrangement of

modules is shown on figure 6.

Figure 6. Functional scheme of the system

We use two cameras, shooting videos simultaneously with different exposure (1st

is low, 2nd is high).

Two RAW_data streams are transmitted from cameras to FPGA,

When the DE-nano10 is ON, “preloader” and “u-boot” run in the ARM.

U-boot firmware updates FPGA and passes control to the Linux kernel, and then

system is ready-to-run. After that, User switches on the User Program. Now the

system is ready to use.

SCCB_camera_config module reads register values and transmits data from the

cameras via I2C data protocol

In the convert2avl_stream module the data, received from cameras with the

different frequencies, is resynchronized to the system clock and the beginning of

frames are synchronized with each other. Further processing occurs in parallel in a

single clock domain.

Gamma correction module applies User changes image to make it better to watch.

Synchronized data streams transmit to the fix_parallax module, where two frames,

received from two cameras, shift from each other to fix parallax.

75

The shift value fixes by parallax_corr signal, received from ARM.

In RAW2RGB_modules the RAW stream is converted into 3 color components of

RGB color space, that arrive to the module implementing the HDR algorithm

In HDR_module LDR streams are combined into one HDR stream according to

Paul Debevec algorithm

Received HDR streams can be optionally subjected to a tone correction in the

wrp_tone_mapping module and/or filltered by matrix filter in the wrp_conv_filter

module

The processed stream is recorded in the frame buffer in DDR3 memory in the

sdram_write module

The HDMI_TX_module requests data from the sdram_read, resynchronizes it to

the HDMI_TX chip's clock domain and sends it to the chip that provides support

for the HDMI standard.

In this architecture ARM doesn’t participate in data processing, the receiver is a

monitor, but each frame is registered in shared memory DDR3 access to which has

the processor.

Thus, if the process work is required, in our architecture ARM has access to each

HDR frame.

When using SoC (FPGA+CPU) we have the opportunity to receive the image with

high dynamic range and minimum time delay, available for secondary processing

in CPU.

5.2. MODULES View

5.2.1. Hps_register module

In this project, a 32-bit “hps2fpga” bridge applies to implement external control of

video processing and initialization of camera registers. In the address space of this

bridge the HPS program transfers transactions to initialize internal FPGA registers

or camera control registers. Table 1 lists the addresses of the internal FPGA

registers. Parameters from these registers are used for remote control of

algorithms for processing the video stream. Transactions received via the hps2fpga

bridge with addresses not listed in Table 1 are redirected to the

SCCB_camera_config module for conversion to the SCCB interface.

Table 1. Internal FPGA registers

76

5.2.2. SCCB_camera_config module

To get the video stream from the cameras, the HPS program loads the initial

configuration into the camera registers using the Serial Camera Control Bus

(SCCB) interface over the hps2fpga bridge.

At the stage, the parameters are set in the control registers of both cameras to

output frame in RAW format with a resolution of 1280x720. The HPS package

contains a 2-byte register address and one byte of data to write to the camera's

control register at this address.

At the stage of adjusting the output of the frames processed by the HDR algorithm

to the display, the exposure level for each camera is adjusted separately.

5.2.3. Convert2avl_stream module

Two asynchronous streams of video data at a frequency of a pixel clock each

arrive at the input of the module from gpio pins. The main goal of this module is

the synchronization of the two streams with the transition to the system frequency

and data output via the avalon_stream interface. The module also counts the

difference between HREF strobes. To prevent the increasing of this difference in

the gaps between these strobes , the frequency decreases by 1 MHz for that

camera, the data from which begin to advance data from another camera by more

than the length of one line. This solution ensures stable synchronization of the two

streams throughout the entire operation of the camera. An example of the

synchronization of the two flows is shown in Fig.7.

77

Figure 7. The example of the synchronization of the two flows

5.2.4. RAW2RGB Data processing module

Camera transmits to FPGA a RAW data stream, which should be converted to

RGB color space, so one of the problem we needed to fix in our project is a row

data processing, receiving from camera.

Modern image sensors are arranged this way: each pixel sensor contains the

information of one color (Red, Green, Blue) as a result of applying a two-

dimensional color array to the image sensor, which receives only luminance. It

calls a Bayer filter.

Figure 8. Bayer filter put on the image sensor

In order to get the usual image in RGB format, we need to process the raw data

from the photo matrix. There are several ways to get an RGB image, the most

common is

78

 receiving RGB image directly from camera, but camera module contains

non powerful controller, that reduces FPS, and data conversion takes a

long time

 real-time data conversion in FPGA (this way is the most suitable for us).

The method of bilinear interpolation is used for debayering. Colors for pixels are

calculated as follows: for each pixel there are surrounding pixels of the desired

color, and their values are averaged.

There are 4 possible states, requiring different arithmetic operations to get colors.

 even line + even column (for example pixel 7)

G7 = G7;

R7 = (R2+R12)/2

B7 = (B6+B8)/2;

 even line + uneven column (for example pixel 8)

G8 = (G7+G3+G9+G13)/4;

R8 = (R2+R4+R12+R14)/4;

B8 = B8;

 uneven line + even column (for example pixel 12)

G12 = (G11+G7+G13+G17)/4;

R12 = R12;

B12 = (B6+B8+B16+B18)/4;

 uneven line + uneven column (for example pixel 13)

G13 = G13;

R13 = (R12+R14)/2;

B13 = (B8+B18)/2;

To control switching arithmetic operations the FSM is realized in RAW2RGB DATA

PROCESSING MODULE.

To implement the bilinear interpolation method, we need to operate on a 3x3 matrix.

To practice this feature in FPGA we use 3 FIFO connected one after another (pipeline).

The input of the first FIFO receives data from camera. FIFO outputs are connected to

the shift registers. Thus, the matrix, necessary for calculations, each system clock is in

the shift registers.

The latency is the time required to fill 3 FIFOs. After receiving three lines, each

system clock new RGB data appears on the output of the RAW2RGB module.

79

Figure 9 shows the functional scheme of the RAW2RGB module.

Figure 9. The functional scheme of the RAW2RGB module

When this Module is implemented, the following advantages of FPGA are obvious:

is the parallel conversion of two data streams, receiving from each camera. If

desired, we can increase the number of cameras, not losing device’s operation

speed.

5.2.5. Gamma_correction module

Gamma correction, or often simply gamma, is a nonlinear operation used to

encode and decode luminance or tristimulus values in video or still image

systems. Gamma correction is, in the simplest cases, defined by the following

power-law expression:

It is too difficult to realize calculations of floating-point numbers and

exponentiation operations in FPGA, so these operations are realized in CPU.

Gamma correction is realized this way:

In GUI User chooses coefficients, allowing to correct/change gamma values. This

parameter is transmitted via UDP-protocol to SoC (ARM Part)

ARM calculates complex arithmetiс i.e. fractional power an array of numbers, the

result is rounded to integers.

Resulted data is written to the common ARM+FPGA memory

In FPGA data-streams from cameras are transmitted to the memory-address-bus to

be subjected to gamma correction. As a result we have an updated data streams on

the memory-address-bus output.

80

Gamma correction is performed for each camera. It allows us to improve the

quality of the HDR algorithm, since we can adjust the brightness of the image

more flexible.

Above the advantage of SoC (FPGA + CPU) is illustrated. CPU calculates

complex arithmetic, then the result is used by FPGA, in several parallel blocks.

Figure 10 shows the Gamma_correction module scheme.

Figure 10. Gamma_correction module scheme

5.2.6. Histogram_module

In image processing and photography, a color histogram is a representation of the

distribution of colors in an image. For digital images, a color histogram represents

the number of pixels that have colors in each of a fixed list of color ranges, that

span the image's color space, the set of all possible colors.

Usually, digital camera screen displays shows only brightness histogram (except

for expensive SLR cameras), but a color histogram of an image is available only

on the computer. Our project enables to construct a real-time color histogram for

each color channel, brightness histogram for each camera’s data-stream or for the

output stream, at the user's choice.

The histogram construction is divided into 2 parts: FPGA part and CPU part.

A module that contains 256 32-bit registers is described in FPGA. At the

beginning of the frame, the registers are set to zero, then the incoming data is

analyzed and the register which number is equal to the value on the data bus is

incremented.

81

When the frame is ended, the registers have the values necessary for plotting the

histogram.

In C/C++ programming language, a function is implemented that initializes a part

of the framebuffer so that a histogram of 200 by 256 pixels is displayed in the

lower right corner of the screen.

Figure 11 shows the histogram_module functional scheme.

Figure 11. The histogram_module functional scheme

5.2.7. Parallax_fix module

Parallax – changes of visible position of object relative to the distance background

in dependence of observer position.

At simultaneous output of images to the monitor from two cameras, which are

located as close as possible to each other and adjusted in the angle of elevation

and angle of rotation, without processing of incoming data, on the monitor will

receive two images with offset relative to each other horizontally. Look at this

picture, at least uncomfortable. Figure 12 shows “Fundamental parallax issue for

blending images from multiple cameras”.

82

 Figure 12. Fundamental parallax issue for blending images from multiple

cameras

83

The Fix_paralax module is implemented to tackle this effect.

Main idea is that the images are displaced to each other, but their biggest areas are

intersected, that means that it is necessary to align them. This can be done by

discarding the edges of the frame, leaving only the common part of images of two

cameras.

Figure 13 shows the two images with offset relative.

Figure 13. Two images with offset relative

 In FPGA this method is realized as follows.

 Incoming lines are recorded into FIFO.

 The line form the right camera is recorded from the first pixel up to pixel

1280-N (1280 – number of pixels in the line).

 the line from the left camera is recorded from pixel N up to the last pixel.

 The value N – pixels amount between two images frames, and depends on

the distance to the subject and the distance between cameras.

 After the parallax is fixed, the image is reduced by the number of pixels N,

and the discarded pixels are filled with zeros.

On the screen, this appears as a narrow black stripe at the edge of the screen.

For each various constructive execution of such a system, this parameter will have

different values, in our case N=50, which is not noticeable when the number of

pixels in the line is 1280.

In our work, we use cameras with a sufficiently large size (physically) and do not

have the physical ability to place them close enough to each other, so the parallax

effect influence the image more strongly than in the case of using more compact

dual cameras (as in modern smartphones) and placing them as close to each other.

84

These difference are shown on the Figure 14.

Figure 14. Difference between cameras placing

When using compact dual cameras, the parallax effect will have a much smaller

influence on the image quality. Figure 15 shows the parallax_fix module.

Figure 15. Parallax_fix module

5.2.8. Module of frequency correction

Our project uses inexpensive cameras, which have certain disadvantages, and one

of them is the difference in the pixel clock output frequency value.

When the same clock pulse XCLK is applied to the cameras with a frequency of

24 MHz, which is multiplied and divided by the user’s defined values in the

internal PLL of the camera module, the frequency of PCLK signals coming from 1

and 2 cameras to the input FPGA are not equal in between. This leads to the fact

that processing of each next frame will be out of sync at the time of their

admission to the FPGA input. This is unacceptable for our project, as the

processing of frames should be synchronized.

To solve this problem, we implemented a frequency tuning algorithm. Its essence

85

is as follows: the time between the beginning of the frame from each camera at the

FPGA input is analyzed, the critical value of the time interval difference between

the frames is fixed, and at this moment the frequency tuning of the “outrunning”

camera is made by reducing the XCLK clock frequency PULSE from 24 down to

23 MHz. When the frames are re-synchronized again on both cameras is fed an

XCLK clock frequency 24 MHz.

In this module we use one of the advantages of FPGA - the presence of built-in

PLL. Using PLL we can get almost any clock frequency. The ability to operate at

different frequencies is important to work with different peripherals, improving

performance and reducing energy consumption. Without the ability of the

frequency dynamical change on the operating device, our project can not be

implemented due to imperfections of the cameras.

5.2.9. HDR_algorithm module (the algorithm of HDR processing)

Our work does not imply the creation of a new data processing algorithm to

produce HDR, so we used the popular algorithm created by Paul Debevec. The

theory of this algorithm can be found in (p. E. Debevec and J. Malik, “Receiving

high dynamic range radiance maps from photographs,” in Proceedings of the 24th

annual conference on Computer graphics and interactive techniques (SIGGRAPH),

1997, pp. 369-378.).

In this work we have simplified it and implemented it in FPGA. The simplified

theory of the above algorithm is presented in the description below.

Where

Ei - is the irradiances,

Zij - is the pixel value of pixel location number i in image

∆tp - is the exposure duration.

The function g is defined as g = ln f −1.

We get data from the camera after gamma correction, so we can average the data

from the cameras with weights calculated for them, without the use of a

logarithmic function

86

Where ω(z) - is the weighting function.

It is a simple hat equation corresponding to the weighting function ω(z)

This algorithm has no feedbacks and can be implemented as a conveyor, which

makes it convenient for implementation in FPGA rather than in CPU.

 Data from the module input is fed to the submodule input to calculate the

weighting coefficients w0(z) w1(z). In parallel with the module of

calculation of coefficients of the data are delayed in the shift register for

the time of calculation of the coefficients.

 The weighting coefficients are summarized ∑w(z)

 The summary coefficient is multiplied with the delayes data ∑w0(z)*Z0

∑w1(z)*Z1.

 The results of the multiplication are folded.

 In parallel, the summary coefficient is delayed for the time the sum is

calculated.

 The sum of the results of multiplying the input data by the summarized

weight coefficient is divided by the summarized weight coefficient and is

sent to the module’s output.

Figure 16 shows the functional diagram of HDR_algorithm module

Figure 16. Functional diagram of HDR_algorithm module

Thus, each tact of the system clock on the module input with the description of the

algorithm receives information about the pixel, and each tact of the system clock

on the output is set to the value processed by the algorithm.

87

The advantage of using FPGA in this module is the parallel processing of two data

streams: simultaneous calculation of weight coefficients eliminates the need to

store data, everything takes place in the stream.

5.2.10. Tone mapping

Tone Mapping - is a technique is used to convert an image from an extended

dynamic range that cannot be represented on a computer monitor screen to a more

limited range.

To implement the algorithm, we used the following formula

Where D – is the displayable luminance

Ei – a radiance value of the HDR frame

Ei(min) and Ei(max) – are the minimum and maximum luminance of the scene

τ – is the overall brightness control of the mapped image

 The data is coming to the input of the submodule min_max_detector,

where the minimum and maximum values of the current frame brightness

and their difference are searched, at the end of the frame they are saved

for use in the processing of the next frame.

 The minimum value is subtracted from the input data.

 The difference is divided by the difference of the maximum and minimum

values.

Due to the fact that the video stream is processed in real time, Imin and Imax

cannot be used for the current frame, so the assumption is that the brightness

between frames does not change dramatically, and the Imin and Imax values for

the current frame are taken from the previous one. For the first frame, Imin and

Imax are initialized to the minimum and maximum values. Dmin equals 0, Dmax

255, r = 0.

Figure 17 shows the functional diagram of the tone mapping module.

88

Figure 17. The functional diagram of the tone mapping module

5.2.11. Filters based on convolution matrix [1]

In our project we implemented a filtering module. This module demonstrates the

capabilities of the FPGA for stream filtering of the image from noise, obtaining

effects such as the presence of edges of objects, blur, sharpen images, etc. These

filters are necessary for secondary treatment in CPU in the implementation of the

fundamental operations in computer vision, pattern recognition, etc.

The filter implementation algorithm is based on the convolution function. In non-

mathematical terms, convolution - is the transformation of one matrix by another,

which is called the kernel.

When processing images, matrixes of RGB pixel channels in rectangular

coordinates act as the source. Changing the kernel of the matrix, we can get effects

such as blur, sharpen, edge detection, emboss and others. Figure 18 shows an

example of calculating a single pixel when overlaying a matrix containing a unit at

position 01

Figure 18. Example of calculating a single pixel when overlaying a matrix

containing a unit at position 01

The calculation of the pixel value is represented in the formula.

(40*0)+(42*1)+(46*0)+(46*0)+(50*0)+(55*0)+(52*0)+(56*0)+(58*0) = 42

In our project we use the kernel of a 3x3 matrix, it is stored in registers and can be

updated from HPS. To use the 3x3 kernel, we need to operate with a part of the

3x3 image.

89

To implement this feature in FPGA we use 3 FIFO connected one after another,

the input of the first FIFO receives data from cameras or after HDR processing.

The outputs of the FIFO are connected to the shift registers depth 3.

The FIFO’s recording and reading is made simultaneously, and after the first three

lines of the FIFO are filled in, the shift registers will have a new value of the 3x3

part of the image. This processing can not be applied to the edges of the image, so

we pass them to the output unchanged.

The multiplication of the input image area to the matrix kernel is performed in one

clock in 9 parallel multipliers. Summation of multiplication results is organized in

a conveyor belt to achieve maximum frequency.

The filter modules are separate for each color component, and the calculations

take place in parallel. If necessary, you can apply a filter to a separate color

channel.

Figure 19 shows the functional diagram of the filter module

Figure 19. Functional diagram of the filter module

5.2.12. Sdram_write module

To write any data to the shared memory DDR for HPS and FPGA, it is necessary

to allocate a space of continuous physical memory at the Linux kernel level. For

this purpose the module of the kernel sdram_module_hdr.ko was written. Аfter

insertion into the kernel this module allocates in DDRmemory two buffers.

The size of each buffer - 4 MB. Then the module transfers the initial address of

these buffers to write them in the registers of the FPGA with number 1 and 2 into

the address space of the bridge hps2fpga.

In this project, the kernel-allocated memory serves as a framebuffer to output the

90

processed HDR video stream to HDMI.

The processed RGB components are written to DDRmemory at the frequency of

the camera.

Odd frames are written to the first buffer, even frames are written to the second

buffer.

The total number of bytes of a frame required to write a frame is 2764800 bytes.

Data transfer is carried out by bursts of length 32 over the bridge fpga2sdram. In

total, the transfer of the frame takes 14,400 bursts.

After the current frame is written to the memory buffer, the read module

sdram_read is given permission to read the new buffer. Before sending to the

SDRAM controller the RGB the components are packed into 64-bit words and

written to FIFO to eliminate data loss as a result of the change of signal

waitrequest. The format of the 64-bit word is presented in Table 2.

Table 2. The format of the 64-bit word.

5.2.13. Sdram_read module

Sending requests for reading a line from DDRmemory begins after receiving from the

HDMI_tx signal line_request. The width of the bus of the data interface

fpga2sdram_read is 32 bits.

In order to read one line it is necessary to have 16 bursts. Each burst has a length of

80.

The timing diagram for reading data from DDRmemory is shown on the Figure 16.

The format of the 32-bit word is given in Table number 3. Switching between buffers

in the memory DDRtakes place only after receiving confirmation from the

sdram_write module that the new frame is completely loaded into the buffer .

Otherwise, the previous frame for the module HDMI_tx will be read again.

Table 3. The format of the 32-bit word.

Figure 20 shows the timing diagram for reading data.

91

Figure 20. Timing diagram for reading data.

5.2.14. HDMI TX module

The ADV7513 High Performance HDMI Transmitter is installed on the Terasic

DE0-Nano-SoC developer kit, that allows us not to implement Physical level of

HDMI by FPGA. We only need to transmit signals (strobes), which the transmitter

requires (HSYNC, VSYNC, DATA ENABLE). It simplifies the implementation of

video output on the screen. The necessary information of strobes duration time can

be found in CEA-861-E standard.

Figure 21 shows the output waveform of HSYNC, VSYNC, DATA ENABLE.

Figure 21. Output waveform of HSYNC, VSYNC, DATA ENABLE

92

HDMI TX MODULE contains several counters, generating strobes duration

required. Before the new line HDMI TX module requests data from the SDRAM

controller module to send data to the screen.

This data, received at the system frequency into the HDMI TX module, resync in

FIFO HDMI TX to the ADV7513’s necessary frequency and, accompanied by

strobes, follow to the ADV7513.

One of the advantage of FPGA, which can be realized in HDMI TX MODULE is

the possibility of using another receiver.

We implemented this project with the ADV7513, but, if necessary, it’s possible to

transmit video by the other interface, including the physical level (to reassign the

input and output pins and voltage standards).

V. Performance metrics / goals

To realize our idea we have employed almost all the elements available in the SoC:

 memory blocks;

 DSP blocks;

 PLL;

 HPS;

 DDR controller;

 ethernet controller.

Basically, we can describe these blocks (above) via Verilog manually, but due to

the fact that these blocks are realized in SoC (basic), we get a significant system

performance advantages and save resources to implement more other features

FPGA resources

Figure 22 shows the comparison between the limited/utilized FPGA resources.

93

Figure 22. The comparison between the limited/utilized FPGA recources

Resolution (video quality)

We are aimed to get an HD video with 1280x720 resolution. This resolution is

chosen to get an optimal "extension/fps" ratio. That was succeed in our project.

Design performance

In our project we use two cameras, getting data according to the waveform below.

Figure 23 shows the camera interface data transmitting timing diagram.

Figure 23. Camera interface data transmitting timing diagram

Data is transmitted in case of “HREF” is high. In case of “HREF” is low the

pipeline is out of valid date.

We have measured FPS, using oscilloscope. Figure 24 shows VSYNC pulse

period. As we can see, pulse period is 40ms, it means that our system performance

is 25 FPS.

94

Figure 24. VSYNC pulse period

To estimate the design performance and effectiveness of our project we should

consider the ideal case which is not possible while using widely used modern

cameras ("HREF" is high always).

In our project FPGA system clock is 100MHz, data bus width from each cameras

is 8 bit. Thus, we process the common data stream from two cameras with the

speed 1.6 Gb/s.

100*10^6*8*2 = 1.6*10^9bit (1.6 Gb/s)

The one of the main part of our project is to process HD video streams are

received from 2 cameras, which is realized not achieved the FPGA performance

limit.

We can estimate the FPGA performance limit according to our project.

Time Quest report shows that maximum system clock value of our design is about

130MHz. We can achieve the system clock more than 150MHz via several not

difficult optimisations. Thus, we can process the 2.4 Gb/s data stream.

150*10^6*8*2 = 2.4*10^9bit (2.4 Gb/s).

VI. Design Method

The uniqueness of the project implementation is in the next: nowadays a lot of

devices are programmed to get an HDR video using only one camera processing

95

data in CPU.

In our project to realize the HDR real-time HD video we have used two cameras

streaming video simultaneosly. The HDR data processing algorithm, we have

implemented in the project, is based on the way of several cameras using.

IIn our work this algorithm is realized in FPGA - that is the uniqueness of the

project, because the FPGA is not common to aplicate to such tprojects types.

The functional diagram of FPGA design, is demonstrated the mutual arrangement

of modules, is shown on figure below (fig.25).

Figure 25. The functional diagram of FPGA design

Description

We use two cameras, shooting video simultaneously, but with different exposure

(0 camera with low, 1 camera with high).

When the DE-nano10 is ON, “preloader” and “u-boot” run in the ARM.

U-boot updates FPGA firmware and passes control to the Linux kernel, and then

the system is ready-to-run. After that, user switches on the User Program. Now the

system is ready to use.

96

Cameras are initialized. Via the “User program”, the necessary data is recorded to

the modules on FPGA.

SCCB_camera_config module reads register values and transmits data to the

cameras via I2C data protocol.

After cameras are initialized, each camera transmits data to FPGA with different

frequencies.

In convert2avl_stream module data streams are resynchronized to the system

clock and the starts of frames are synchronized to be able to parallel data

processing.

Synchronized data streams are transmitted to gamma_correction modules, where

each data stream are corrected not depended.

Corrected data streams are transmitted to the fix_parallax module, where two

frames, received from two cameras, are shifted from each other to fix parallax.

The shift value are detected by parallax_corr signal, received from ARM.

Then via RAW2RGB_bilinear_interpolation module RAW data streams are

converted to RGB color space.

RGB data streams are transmitted to the HDR module.

Received HDR data stream can be optionally subjected to a tone_mapping module.

In case of indicating bit “enable” as “1”, incoming data streams are processed, in

case of indicating bit “enable” as “0”, incoming data streams are not changed.

LDR data streams from the 0 and 1 cameras, and HDR data stream, are

transmitted to the MUX1, controlled by the ARM-module. So, we can switch

between 2 cameras, or choose the HDR mode.

Data streams are transmitted from MUX1 to the convolution_filter. User chooses

the necessary filter, entering coefficients for the convolution matrix kernel.

Processed data are transmitted to the SDRAM_write module, which writes Data to

DDR3_memory.

Also data from convolution_filter are transmitted to Y_comp module (to calculate

brighhtness value from RGB channel) and MUX2, controlled by the ARM-module.

So, we can choose necessary histogram: color or brightness.

97

After user chooses type of histogram, required data stream (Y, R, G, B) is

transmitted to the hist_calc module to calculate histogram, values are written to

the FPGA+CPU common memory.

The module for data transfer via HDMI - HDMI TX interface requests data from

DDR3 memory through the module sdramread and transmits it to the screen.

The software flow is available by the link:

https://github.com/sh-vlad/FPGA_rtime_HDR_video

VII. Conclusion

The main aim of the project is to realize HDR real-time HD video via Terasic

DE10-Nano KIT with Intel SoC (FPGA Cyclone V + ARM A9), that is succeed.

Also we have realized some features

Release_1 (31/05/2018). Realized functions:

HDR stream;

Additional filters as well as real-time video;

Tone-mapping;

PC remote control by "ethernet".

Release_2 (30/06/2018). Realized additional functions:

Gamma-correction

Real-time color histogram for each color channel, brightness histogram for each

camera’s data-stream and output stream

GUI is improved

SoC (FPGA) architecture flexiblility advantadges are encouraged us to work on

the project and improve the algorithms and the system, so we are going to improve

the project In the near future.

Starting our project, we were aimed to show practical implementation of our idea

by Intel FPGA. While realizing the project, it was found, that concept is working.

In spite of using cheap cameras, we have a really good result.

Now the FIFA World Cup Russia 2018 is taking place. We and millions people all

over the world are watching live broadcast of this Grand event.

Such events are shot via professional cameras with a best characteristics, costing

https://github.com/sh-vlad/FPGA_rtime_HDR_video

98

tens of thousands dollars. But even such cameras have significant disadvantages,

for example in cases of shooting objects, which are located against the light or low

brightness and high brightness zones simultaneously.

Figure 26 shows the screenshot of football match online broadcasting between

Costa Rica and Serbia, which has taken place a sunny day.

Figure 26. The screenshot of football match online broadcasting

between Costa Rica and Serbia

We can see that a lot of details, which are in bright area, are lost in the frame, and

this video broadcast was watched by millions spectators.

Figure 27 shows cameras’ dynamic range deficit.

99

Figure 27. Cameras’ dynamic range deficit

We can see, that football player in white is almost disappeared from the frame, so

the viewer can miss important moments of the match.

So, even expensive professional premium quality cameras can't fix some problems

and transmit high quality real-time HD video, where all areas of frame and every

objects are clearly visible.

Areas of our development application are not limited of tasks, which was set at the

start of the project, and class of cameras used. Our device is really good if

expensive cameras’ using is redundant, for example for high quality selfie-

cameras (1 premium quality camera much more expensive than 2 cameras with

standard characteristics), as well as good if we want to make live broadcasting

with excellent quality when using premium quality camera.

Future plans

As showed above, FPGA has a free resource, which we can use to improve our

project. We can

 connect more cameras to improve quality of HDR-stream;

 implement an HDR-stream compression algorithm to transmit data to PC

via “ethernet” protocol;

 implement feature, applied to save HDR-stream data to SD-card;

 increase FPS;

 add more other features.

We have a lot of opportunities to apply our project in wide areas:

 robotic platforms;

100

 dashcams;

 traffic/security cameras;

 live broadcasting from sport events by professional cameras;

 etc.

Follow our project on github, the latest features are there.

VIII. References

[1] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps

from photographs”, 1997.

[2] J. Duan, M. Bressan, C. Dance, and G. Qiu, “Tone-mapping high dynamic

range images by novel histogram adjustment,” Pattern Recognition, May 2010.

[3] Alexey Ignatenko “HDR image constructing by LDR images combining“.

Materials of lecture course “Basics of realistic rendering”. (RUS: Алексей

Игнатенко "Построение HDR-изображения по набору LDR-изображений".

Материалы к лекциям по курсу "Основы синтеза

фотореалистичных изображений").

[4] Dmitry Vatolin “Bayer-pattern interpolation”. Lecture course “Methods of

Media data compression”. (RUS: Дмитрий Ватолин "Интерполяция Bayer-

pattern". Из курса лекций «Методы сжатия медиаданных»).

