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1 About the Drive-On-Chip Reference Design v16.0
The Altera® Drive-On-Chip Reference Design v16.0 demonstrates synchronous control
of up to two three-phase permanent magnet synchronous motors (PMSMs) or
brushless DC (BLDC) motors. The reference design supports a bidirectional DC-DC
converter from a single FPGA.

Figure 1. Altera Tandem Motion-Power 48 V Board with MAX 10 10M50 FPGA
Development Kit

When you use the reference design with the Altera Tandem Motion-Power 48 V Board,
it also demonstrates control of a bidirectional DC-DC converter with control loops in
DSP Builder generated hardware.

The Drive-On-Chip Reference Design v16.0 supports the Rev C (or later) Altera MAX
10 10M50 FPGA Development Kit.
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Supported FPGA Development Kits

The Drive-On-Chip Reference Design v16.0 requires you to attach a power board to
the FPGA development kit. The power board must, at a minimum, implement the
motor drive electronics (e.g. IGBT or MOSFET switches), current and voltage feedback
signal conditioning and DC link power bus to provide power to the motor via the
inverter. the design requires position feedback for some control algorithms.

Supported Motor Control Boards

Table 1. Supported Motor Control Boards

Board Vendor Website Power Stage Sample Rate
(kHz max)

Supported
Feedback

Tandem Motion-
Power 48 V Board

Terasic www.terasic.com MOSFET 125 Quadrature
encoder, resolver,
sensorless,
trapezoidal

FalconEye 2 HSMC
Motor Control
Board

Devboards http://
www.devboards.d
e

IGBT 16 EnDat and BiSS
absolute
encoders,
sensorles"

AC and Servo Drive Systems

AC and servo drive system designs comprise multiple distinct but interdependent
functions to realize requirements to meet the performance and efficiency demands of
modern motor control systems. The system's primary function is to efficiently control
the torque and speed of the AC motor through appropriate control of power
electronics. A typical drive system includes:

• Flexible pulse-width modulation (PWM) circuitry to switch the power stage
transistors appropriately

• Motor control loops for single- or multiaxis control

• Industrial networking interfaces

• Position encoder interfaces

• Current, voltage, and temperature measurement feedback elements.

• Monitoring functions, for example, for vibration suppression.

The system requires system software running on a processor for high-level system
control, coordination, and management.

MAX 10 Devices and DSP Builder

Altera MAX® 10 devices offer high-performance fixed- and floating-point DSP
functionality, and Nios II soft processors. MAX 10 FPGA devices offer a scalable and
flexible platform for integration of single- and multiaxis drives on a single FPGA. The
Altera motor control development framework allows you to create these integrated
systems easily. The framework provides a reference design that comprises IP cores,
software libraries, and a hardware platform. The framework demonstrates Altera
design tools DSP Builder for DSP IP design and Qsys for creating the the Avalon®

Memory-Mapped (Avalon-MM) interface between IP and the processor, and includes all
software and IP components. You can extend and customize the reference design to
meet your own application needs. The framework supports partitioning of algorithms
between software running on an integrated processor and IP performing portions of
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the motor control algorithm in the FPGA, to accelerate performance as required. For
example, depending on the performance requirements of your system or the number
of axes you need to support, you may implement the field-oriented control (FOC) loop
in hardware designed using DSP Builder, or in software on the Nios II processor. The
framework allows you to connect to the motor and power stages through on chip or
off-chip ADCs, feedback encoder devices and transistor gate drive circuitry. You can
connect to higher-level automation controllers by adding off-the-shelf IP, for example
for industrial Ethernet or CAN.

DSP Builder provides a MATLAB and Simulink work flow that allows you to create
hardware optimized fixed latency representations of algorithms without requiring HDL/
hardware skills. The reference design provides fixed- and floating-point examples of
the FOC algorithm. You can use the DSP Builder folding feature to reduce the resource
usage of the logic compared to a direct parallel implementation.

Related Links

Altera MAX 10 10M50 FPGA Development Kit
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2 Features

• Multiple FOC loop implementations:

— Fixed- and floating-point implementation with Nios II processors targeting
MAX 10 FPGA devices

— Fixed- and floating-point accelerator implementations designed using Simulink
model-based design flow with DSP Builder

• Integration in a single MAX 10 FPGA of single and multiaxis motor control IP
including:

— High performance PWM IP at 333 MHz for two-level IGBT or MOSFET power
stages

— Sigma delta ADC interfaces for motor current feedback and DC link voltage
measurement

— Direct connection to MAX10 integrated ADC

— Multiple position feedback interfaces (default quadrature encoder)

• Bidirectional DC-DC converter for Tandem Motion-Power 48 V Board

— 9 to 16 V input

— 12 to 48 V output

— System Console toolkit GUI for motor feedback information and control of
motors

2 Features

© 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, NIOS,
Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries.
Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and
semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the
right to make changes to any products and services at any time without notice. Intel assumes no responsibility
or liability arising out of the application or use of any information, product, or service described herein except
as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


3 Getting Started with the Drive-On-Chip Reference
Design v16.0

Software Requirements for the Drive-On-Chip Reference Design v16.0 on page 9

Downloading and Installing the Drive-On-Chip Reference Design v16.0 on page 9

Setting Up the Motor Control Board with your Development Board for the Drive-On-
Chip Reference Design v16.0 on page 10

Importing the Drive-On-Chip Reference Design v16.0 Software Project on page 12

Configuring the FPGA with the Drive-On-Chip Reference Design v16.0 Hardware on
page 12

Programming the Nios II Software to the Device for the Drive-On-Chip Reference
Design v16.0 on page 13

Applying Power to the Power Board on page 14

Debugging and Monitoring the Drive-On-Chip Reference Design v16.0 with System
Console on page 14

System Console GUI Upper Pane for the Drive-On-Chip Reference Design v16.0 on
page 14

System Console GUI Lower Pane for the Drive-On-Chip Reference Design v16.0 on
page 15

Controlling the DC-DC Converter on page 17

Tuning the PI Controller Gains on page 17
The Drive-On-Chip Reference Design v16.0 contains three PI control loops for
current (inner most loop), speed and position. You can tune the gain of each PI
control loop.

Controlling the Speed and Position Demonstrations on page 17
The Drive-On-Chip Reference Design v16.0 speed and position demonstrations
show constant or varying speed and position.

Monitoring Performance on page 18
The Drive-On-Chip Reference Design v16.0 offers many way to monitor the
performance.
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3.1 Software Requirements for the Drive-On-Chip Reference Design
v16.0

• The Altera Complete Design Suite version 16.0, which includes:

• — The Quartus Prime software v16.0

— DSP Builder v16.0

— The Altera Nios II Embedded design Suite (EDS) v16.0 (installed with Quartus
Prime)

3.2 Downloading and Installing the Drive-On-Chip Reference
Design v16.0

1. Download the relevant reference design .par file for your development kit and
power board from the Altera Design Store.

2. Install the relevant reference design .par file for your development kit and power
board.

Archive file Development Kit Power Board

DOC_LVMC_MAX10.par MAX 10 10M50 Tandem Motion Power

DOC_FE2H_MAX10.par MAX 10 10M50 FalconEye 2 HSMC

3. In the Quartus Prime software, click File ➤ New Project Wizard.

4. Click Next.

5. Enter the path for your project working directory and enter variant name from the
table for the project name.

6. Click Next.

7. Select Project Template.

8. Click Next.

9. Click Install the design templates.

10. Browse to select the .par file for the reference design and browse to the
destination directory where you want to install it.

11. Click OK on the design template installation message.

12. Select the Drive on Chip Reference Design design example.

13. Click Next.

14. Click Finish.
The Quartus Prime software expands the archive and sets up the project, which
may take some time.

Related Links

• Drive-On-Chip Reference Design v16.0 at the Altera Design Store

• FalconEye website
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3.3 Setting Up the Motor Control Board with your Development
Board for the Drive-On-Chip Reference Design v16.0

To prevent damage to the motor control board, ensure development board and power
board are turned off and do not apply power until you have made all connections.

1. Ensure DIP SW2 is set to OFF-ON-ON-ON.
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Figure 2. DIP SW2 Setting

2. Connect the power board to the development board using the HSMC connector.

3. Connect a USB cable from the USB-Blaster connector on the development board to
your computer.

4. Apply power to the development board

Related Links

• Applying Power to the Power Board on page 14

• MAX 10 FPGA Development Kit User Guide
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• Tandem Motion Power 48 V Board Reference Manual

• Setting up the FalconEye2 HSMC Board

3.4 Importing the Drive-On-Chip Reference Design v16.0 Software
Project

Download and install the reference design

1. Start Nios II EDS. In the Quartus Prime software click Tools > Nios II Software
Build Tools for Eclipse.

2. Browse to the \software folder in the reference design project directory.

3. Click OK to create the workspace.

4. Import application and board support package (BSP) projects:

a. Click File > Import.

b. Expand General and click Existing Projects into Workspace.

c. Click Next.

d. Browse to \software\ and click OK.

e. Click Finish.

5. Generate the BSP project: right-click <variant>_bsp project in the Project
Explorer tab, point to Nios II, and click Generate BSP.

6. Build the application project: right-click <variant> project in the Project
Explorer tab and click Build Project.

On Windows, building the project for the first time might take up to one hour to
build the newlib C libraries with support for the Nios II floating point custom
instructions.

Related Links

• Downloading and Installing the Drive-On-Chip Reference Design v16.0 on page 9

• Downloading and Installing the Drive-On-Chip v16.0 Reference Design

3.5 Configuring the FPGA with the Drive-On-Chip Reference Design
v16.0 Hardware

Set up the motor control board with your development board.

Note: Always remove power from the motor control power board, before reprogramming the
FPGA, or removing power from the development boards.

1. In the Quartus Prime software, click Tools > Programmer.

2. In the Programmer pane, select USB-Blaster II under Hardware Setup and
JTAG under Mode.

3. Click Auto Detect to detect devices.

4. Select the 10M50DA device.

5. Double-click on the File field for the 10M50 device from the pop-up list.

6. Select the .sof file:

3 Getting Started with the Drive-On-Chip Reference Design v16.0
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• For the DOC_LVMC_MAX10 variant: output_files/<project
name>.sof and click Open.

• For the DOC_FE2H_MAX10 variant:

— output_files/<project name>_time_limited.sof and click Open.

— Click OK on the OpenCore Plus time-limited .sof message.

7. Turn on Program/Configure.

8. Click Start.

Do not close the OpenCore Plus message that appears when running the
DOC_FE2H_MAX10 variant.

Related Links

• Downloading and Installing the Drive-On-Chip Reference Design v16.0 on page 9

• Setting Up the Motor Control Board with your Development Board for the Drive-
On-Chip Reference Design v16.0

3.6 Programming the Nios II Software to the Device for the Drive-
On-Chip Reference Design v16.0

Configure the FPGA with the reference design hardware

1. In the Nios II EDS Project explorer, click the <project variant> to highlight the
project.

2. 1. On the Run menu, click Run configurations....

a. Double click Nios II Hardware to generate a new run configuration.

b. Click New_configuration.

c. On the Project tab select the <project variant> project in the Project
name drop-down.

d. On the Target Connection tab, click Refresh Connections.
The software finds the USB-Blaster cable.

e. Click Apply to save changes, optionally specifying a name for the new
configuration.

f. Click Run to start the software.

3. 4. Check that the Nios II console shows the correct FPGA and power board
combination. For example for the Tandem Motion-Power 48 V Board project
variant:

 [DECODE SYSID] Decoding hardware platform from QSYS SYSID data : 0x00F143FE 
[DECODE SYSID] Design Version : 16.0 
[DECODE SYSID] FPGA Board : MAX 10M50 Dev Kit 
[DECODE SYSID] Power Board : Altera Tandem Motion Power

Related Links

• Downloading and Installing the Drive-On-Chip Reference Design v16.0 on page 9

• Configuring the FPGA with the Drive-On-Chip Reference Design v16.0 Hardware
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3.7 Applying Power to the Power Board

Note: Always remove power from the motor control power board, before reprogramming the
FPGA, or removing power from the development boards.

1. Apply power to the motor control power board.
The motor connected to axis 0 begins turning after a few seconds. The Nios II
console shows further diagnostic messages as the control loop starts.

3.8 Debugging and Monitoring the Drive-On-Chip Reference Design
v16.0 with System Console

1. In the Quartus Prime software, click Tools > System Debugging Tools >
System Console.

2. In Tcl console type toolkit_register toolkits/doc_toolkit/
DOC.toolkit

3. In the Drive On A Chip Debug GUI area, click Launch.

4. Check that the console display shows the correct FPGA and power board
combination. For example for the Tandem Motion-Power 48 V Board project
variant look for the following lines:

Version = 16.0 Device Family = 3 Powerboard Id = 4 Design Id = 254 
FPGA Board : MAX10 10M50 Dev Kit 
Power Board : Altera Low Voltage Design 
Version : 16.0 

You can right-click on the Drive On A Chip Debug GUI tab and select Detach to
display the GUI in its own window. Close the window to reattach it to the
System Console window.

A number of tabs are populated in the Drive-On-A-Chip Debug GUI, depending on the
project variant. The tabs are grouped into two panes. Use the upper pane, starting
with the Data Source tab to configure the reference design. Use the lower pane,
starting with the General tab to start demonstrations and monitor the state of the
reference design.

3.9 System Console GUI Upper Pane for the Drive-On-Chip
Reference Design v16.0

Trace Setup Tab

On the Trace Setup tab setup:

• The waveform tracing by specifying a trigger

• Axis to trace

• Trace depth

• A filename to store the trace data.

Click Update Trigger after making any changes. Click Start Trace to start tracing.
See the Waveform tab for trace display. When saving trace data to a file, be aware
that the design overwrites the with each trace; it does not append new traces to an
existing file.
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Current Control Tab

On the Current Control tab, enter the P (Kp) and I (Ki) coefficients for the current
control loop, current command limit and output voltage limit. These quantities are
preset to the correct values for the motor type configured in the application software.
Click Update Parameters after making a change.

Speed Control Tab

On the Speed Control tab, enter the P (Speed Kp) and I (Speed Ki) coefficients for
the current control loop. These quantities are preset to the correct values for the
motor type configured in the application software. Click Update Parameters after
making a change.

Position Control Tab

On the Position Control tab, enter the P (Position Kp) and I (Position Ki) coefficients
for the current control loop. These quantities are preset to the correct values for the
motor type configured in the application software. Click Update Parameters after
making a change.

DC-DC Status and Control Tab

The DC-DC Status and Control tab is only available when using the Tandem Motion-
Power 48 V Board.

Related Links

• Controlling the DC-DC Converter on page 17

• Tuning the PI Controller Gains on page 17
The Drive-On-Chip Reference Design v16.0 contains three PI control loops for
current (inner most loop), speed and position. You can tune the gain of each PI
control loop.

• Monitoring Performance on page 18
The Drive-On-Chip Reference Design v16.0 offers many way to monitor the
performance.

• Controlling the Speed and Position Demonstrations on page 17
The Drive-On-Chip Reference Design v16.0 speed and position demonstrations
show constant or varying speed and position.

3.10 System Console GUI Lower Pane for the Drive-On-Chip
Reference Design v16.0

General Tab

Under Data Source:

• In the DSP mode drop-down menu select DSP calculation mode to use
(Software Fixed Point; DSP Builder Fixed point; DSP Builder Floating Point or
Software Floating Point)

• Under the ADC Type drop-down menu, select the ADC to use for feedback
samples (depending on the power board you use)

• Click Show Raw Samples to show raw or scaled samples.
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Drive-On-Chip Reference Design v16.0
15



On the Demo selection: drop-down menu select the control algorithm, type of
commutation, and update rate to be use in the demonstration. The available selections
depend on which motor control hardware you use.

The Status: field reports the status of the demonstration. The Runtime: field updates
from the application software. The Incr: field is updates internally, regardless of
whether the software application is running.

The Run time measurement dials display the processing time of the FOC control
loop and the overall Interrupt Service Routine (ISR) processing time, including
handling debug trace data. in the currently selected DSP mode.

Waveform Demo Tab

In the Demo drop-down menu select speed, position, or other demonstration.

In the Waveform drop down select the dynamic behaviour of the speed or position
demo (constant or varying with sine, square, triangle, sawtooth waveform).

Set the nominal speed or position, waveform period, amplitude and offset and click
Update Demo.

Waveform Tab

The Waveform tab shows the motor control waveform captured as a result of the
trigger settings in the Trace Setup tab. Feedback voltage is only available when using
the Tandem Motion-Power 48 V board.

DC-DC Converter Tab

The DC-DC Converter tab shows the DC-DC converter waveforms captured as a
result of the trigger settings in the Trace Setup tab. The DC-DC Converter tab is
only available when using the Tandem Motion-Power 48 V Board.

Demonstration Selection

The Demo selection: drop-down on the General tab selects the demo to run:

• Reset

• Open loop FOC 16 kHz Volts/Hz

• FOC sensor 16 kHz single axis

• FOC sensor 16 kHz dual axis

• FOC sensor 32 kHz dual axis

• FOC sensorless 16 kHz dual axis

• Trapeziodal hall sensor 32 kHz dual axis

The 32 kHz, dual axis and trapezoidal demonstrations are only available when using
the Tandem Motion-Power 48 V Board.
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3.11 Controlling the DC-DC Converter

1. On the DC-DC Status and control tab enter the desired boost output voltage of
the DC-DC converter.

2. Monitor the changes in the waveforms on the DC-DC Converter tab.

3.12 Tuning the PI Controller Gains

The Drive-On-Chip Reference Design v16.0 contains three PI control loops for current
(inner most loop), speed and position. You can tune the gain of each PI control loop.

When tuning these gains, only change the values a little at a time while monitoring
the performance on the Waveform tab.

1. On the Current Control tab, enter values for:

• Kp (proportional gain).

• Ki (integral gain).

• Current Command Limit

• Output Voltage Limit

The design applies the output voltage limit in two places to limit the applied
voltage:

• Current PI loop integrator.

• Current PI loop output (Voltage command) See V_sat_limit in function
update_axis in motor_task.c.

For the Current Command Limit and Output Voltage Limit, the values you enter
are based on raw values. The scaling is the same as for the trigger function
values.

2. Click Update Parameters.

3. On the Speed Control tab:

• Enter values for Kp (proportional gain) and Ki (integral gain).

• Click Update Parameters.

4. On the Position Control tab:

• Enter values for Position Kp and Position Ki.

• Click Update Parameters.

3.13 Controlling the Speed and Position Demonstrations

The Drive-On-Chip Reference Design v16.0 speed and position demonstrations show
constant or varying speed and position.

1. Selects the way the speed or position varies during the demonstraiton in the
Waveform drop down.

The speed or position varies according to the selected waveform.

2. Specify the Speed (position) to control the nominal speed or position for the
respective demonstrations.
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If you select a non-constant waveform, the speed and position vary around this
nominal value.

3. Specify the Period (ms) to control the period of the speed and position variation
waveform.

4. Specify the Waveform amplitude to control the amplitude of the waveform. For
example,a speed of 100 rpm with an amplitude of 50 rpm give a speed varying
between 50 and 150 rpm

5. Specify the waveform offset (ms): tochange the waveform phase (shifted in time).

6. Specify the Speed Limit (rpm) to control the maximum speed in position demo
mode.

7. Click Update Demo to apply changes to the reference design.

3.14 Monitoring Performance

The Drive-On-Chip Reference Design v16.0 offers many way to monitor the
performance.

1. On the Trace Setup tab, under Trigger Signal, select the signal you want to
trigger the trace data capture. If you select Always, the trigger is always active.

2. Under Trigger Edge, select a trigger type:

• Level (trigger signal must match this value)

• Rising Edge (trigger signal must transition from below to above this value)

• Falling Edge (trigger signal must transition from above to below this value)

• Either Edge (triggers on both falling and rising edge conditions).

3. Under Trigger Value, select the value that Trigger Edge uses to compare the
signal value against.

4. Click Update Trigger, if you update the Trigger Value.

5. Under Trace Depth, select the number of samples to capture and display.

System Console can store up to 4,096 samples. Select a lower number of samples
to make System Console update rate faster, and zoom in on the graph as the
graph scale autosizes to the number of samples.

6. Specify a Trace Filename.

System Console saves the trace data saved to a .csv file.

7. Click Start Trace to start the trace; click Disable Trace to stop the trace.
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4 Rebuilding the Drive-On-Chip Reference Design v16.0
Changing the MAX 10 ADC Thresholds or Conversion Sequence on page 19

You can only change the MAX 10 ADC thresholds or conversion sequence for the
Drive-On-Chip Reference Design v16.0 by modifying hardware parameters.

Generating the Qsys System on page 20
After making any changes in the Qsys project for the Drive-On-Chip Reference
Design v16.0, generate the system.

Compiling the Hardware in the Quartus Prime Software on page 20

Generating and Building the Nios II BSP for the Drive-On-Chip Reference Design v16.0
on page 21

Software Application Configuration Files on page 21
You can modify the operation of the software application for the Drive-On-Chip
Reference Design v16.0 by editing some C source code and header files.

Compiling the Software Application for the Drive-On-Chip Reference Design v16.0 on
page 23

Programming the Design into Flash Memory on page 23

4.1 Changing the MAX 10 ADC Thresholds or Conversion Sequence

You can only change the MAX 10 ADC thresholds or conversion sequence for the
Drive-On-Chip Reference Design v16.0 by modifying hardware parameters.

The MAX 10 ADC thresholds detect over or under voltage and current faults by
comparing the sampled signals against preset limits. Errors cause the reference design
to shut down the motor(s) and/or DC-DC converter and inform the software
application of the error condition.

1. Open the Drive-On-Chip reference Design 16.0 project in the Quartus Prime
software.

2. Click Tools > Qsys to open the Qsys editor.

3. Click Close.

4. Select the <project variant> _QSYS.qsys file and click Open.

5. Click Close if any warning dialog appears.

6. Double click on the max10_adc component in the System Contents tab.

7. In the Channels tab select the ADC and channel to edit the thresholds.

8. Enter the desired maximum and minimum thresholds. You must calculate the
absolute voltage in the range 0..1.2 V from the scaling of feedback signals.

9. On the Sequencer tab set the desired Conversion Sequence Length.
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Intel recommends a Conversion Sequence length of 8 for the Drive-On-Chip
Reference Design v16.0.

10. In the Sequencer tab select the ADC and use the drop down menus for each slot
to set the desired conversion sequence.

Intel recommends the sequence for the Drive-On-Chip Reference Design v16.0 is
each channel in numeric order CH 1...CH 8. You must ensure each channel is
converted at least once in the sequence.

Note: Failure to include all channels in the conversion sequence could cause
damage to the Tandem Motion Power 48 V Board by, e.g., not allowing the
application to detect overcurrent errors.

11. Close the Parameters tab.

Generate the system in Qsys.

4.2 Generating the Qsys System

After making any changes in the Qsys project for the Drive-On-Chip Reference Design
v16.0, generate the system.

1. In the Qsys software click File > Save.

2. Click Generate HDL….

3. Click Generate.

4. Click Close.

5. If your changes result in new exported connections you can view the Qsys
component template by clicking Generate > Show Instantiation Template….

Add new ports to the Qsys component instantiation in the top level RTL of the
project <project variant>.v.

6. Close Qsys.

After making a change to the Qsys system you must:

• Regenerate the Nios II BSP and rebuild the software

• Compile the hardware

Related Links

• Compiling the Hardware in the Quartus Prime Software on page 20

• Generating and Building the Nios II BSP for the Drive-On-Chip Reference Design
v16.0 on page 21

4.3 Compiling the Hardware in the Quartus Prime Software

1. In the Quartus Prime software select Processing > Start Compilation.

Related Links

Generating and Building the Nios II BSP for the Drive-On-Chip Reference Design v16.0
on page 21
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4.4 Generating and Building the Nios II BSP for the Drive-On-Chip
Reference Design v16.0

1. Start Nios II EDS: in the Quartus Prime software click Tools > Nios II Software
Build Tools for Eclipse.

2. Browse to the /software workspace directory in the project folder.

3. Click OK.

4. Generate the BSP project: right-click <variant>_bsp project in the Project
Explorer tab, point to Nios II, and click Generate BSP.

• Compile the software application.

• Optionally configure the software application.

Related Links

• Software Application Configuration Files on page 21
You can modify the operation of the software application for the Drive-On-Chip
Reference Design v16.0 by editing some C source code and header files.

• Compiling the Software Application for the Drive-On-Chip Reference Design v16.0
on page 23

4.5 Software Application Configuration Files

You can modify the operation of the software application for the Drive-On-Chip
Reference Design v16.0 by editing some C source code and header files.

Table 2. Software Application Configuration Files

File Path Function

demo_cfg.c . Declare motors[] Array

demo_cfg.h . Configuration macros and include file for demo_cfg.c

motor_types.c Platform/motors Declares motor types and encoders

motor_types.h Platform/motors Defines motor and encoder types and include file for motor_types.c

Table 3. Configuration Macros
This table lists the configuration macros that you can use to configure the reference design in demo_cfg.h.

Macro Default State Range Function

FIRST_MULTI_AXIS 0 0 - 1 Index of first motor axis to
be controlled.

LAST_MULTI_AXIS 1 0 - 1 Index of last motor axis to
be controlled.

DEFAULT_ADC_TYPE ADC_TYPE_SIGMA_DELTA ADC_TYPE_SIGMA_DELTA Use sigma delta ADC
samples in control loop.

ADC_TYPE_MAX10 Use MAX10 ADC samples in
control loop.

SD_ADC_FILTER ADC_D_10US ADC_D_10US Sinc3 filter delay 10us.

ADC_D_20US Sinc3 filter delay 20us.

continued...   
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Macro Default State Range Function

DC_LINK_STARTUP_TARGET_VOLTS 32 12 - 48 Target voltage for DC-DC
converter.

OPEN_LOOP_INIT 0 0 Run motors in closed loop
mode.

1 Run motors in open loop
mode.

INTERACTIVE_START 0 0 Normal startup 1:

1 User prompted via Nios II
console at each stage of
startup

ENCODER_SERVICE Undefined Defined Run EnDat or BiSS encoder
calibration.

Undefined Normal operation.

DBG_DEFAULT DBG_INFO DBG_NEVER No console output.

DBG_ALWAYS Always output.

DBG_FATAL Debug level set to fatal
errors .

DBG_ERROR Debug level set to non-fatal
errors and above .

DBG_WARN Debug level set to warnings
and above .

DBG_INFO Debug level set to
information and above .

DBG_PERF Debug level set to
performance data and
above .

DBG_DEBUG Debug level set to debug
messages and above .

DBG_DEBUG_MORE Debug level set to more
debug messages and
above .

DBG_ALL Debug level set to all
messages.

4.5.1 Defining a New Motor or Encoder Type

1. To use a different motor type or position feedback encoder with the Drive-On-Chip
Reference Design v16.0, declare a new motor type array of type motor_t in
motor_types.c.
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the structure of motor_t is defined in motor_types.h. The array length must
match the number of axes available (e.g. two for the Tnadem Motion Power 48 V
Board).

2. Provide C source code for the three functions encoder_init_fn, encoder_service_fn
and encoder_read_position_fn if none of the existing functions are suitable.

3. Use the functions provided with the Drive-On-Chip Reference Design v16.0 as
templates to write your own functions.

4. Initially, you should be able to use the gain constants from an existing motor type
and then determine new values when you first run the motor by following a
standard PI controller tuning process.

Refer to the declaration of anaheim_qep in motor_types.c software source
file as an example.

5. You must now edit the declaration of the motors[] array in demo_cfg.c to use your
motor.

The default motors[] definition for the Tandem Motion-Power 48 V Board is two
Anaheim Automation motors with quadrature encoders:

motor_t * motors[] = {&anaheim_qep[1], &anaheim_qep[1], NULL, NULL};

The Drive-On-Chip Reference Design v16.0 supports a maximum of two axes so
the third and fourth elements of the motors[] array are set to NULL for clarity. The
default motor type for the FalconEye 2 HSMC Motor Control Board is two
Kollmorgen AKM31C with EnDat encoders.

4.6 Compiling the Software Application for the Drive-On-Chip
Reference Design v16.0

1. Start Nios II EDS. In the Quartus Prime software click Tools > Nios II Software
Build Tools for Eclipse.

2. Build the application project: right-click <variant> project in the Project
Explorer tab and click Build Project.

4.7 Programming the Design into Flash Memory

For the Drive-On-Chip Reference Design v16.0, you can store the FPGA configuration
file in the MAX 10 on-chip flash memory; you can store the software executable in
external QSPI flash memory.

You must rebuild the Drive-On-Chip Reference Design v16.0 with the Nios II reset
vector pointing to the QSPI memory.

1. Compile the software and generate the software programmer object file.

a. In the Nios II SBT, build the BSP project and the main project.

b. Generate the .hex file by right-clicking DOC_FE2H_MAX10 ➤ Make
Targets ➤ Build ➤ mem_init_generate.

c. In the Quartus Prime software click File ➤ Convert Programming Files and
enter these settings:.

4 Rebuilding the Drive-On-Chip Reference Design v16.0

Drive-On-Chip Reference Design v16.0
23



• Configuration device: CFI_512Mb.

• Mode: 1-bit Passive Serial.

d. Change the file name to the desired path and name.

e. In Input files to convert, remove SOF Page_0.

f. Click ADD HEX Data,

g. Choose the .hex file generated previously.

h. Select Absolute Addressing and click OK.

i. Click Generate to create the .pof file.

2. Program the software into QSPI flash.

a. Ensure DIP SW2 is set to OFF-ON-ON-ON.

b. Download the parallel Flash Loader from rocket boards https://
rocketboards.org/foswiki/pub/Documentation/
AlteraMAX1010M50RevCDevelopmentKitLinuxSetup/max10_qpfl.sof.

c. Program the parallel flash loader (max10_qpfl.sof) into the MAX 10 device
to program the QSPI flash, using Quartus Programmer.

d. Right click on the MAX 10 FPGA and select Edit ➤ Change File.

e. Choose the max_qpfl.sof file.

f. Turn on MAX 10 device under Program/Configure.

g. Click Start to start programming.

h. Click on Auto Detect after max10_qpfl.sof was successful.

A new QSPI flash device is shown, attached to the MAX10.

i. Program the software image into QSPI flash.

j. Right click on the SQPI device and select Edit ➤ Change File

k. Choose the generated .pof file (SW.pof).

l. Check the .hex file under Program/Configure.

m. Click Start to start programming.

3. Program hardware .sof file into the MAX 10 FPGA.

a. Right click on the MAX 10 FPGA and select Edit ➤ Change File.

b. Choose the .sof file generated from Quartus Prime project compilation.

c. Click Start to start programming.
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5 About the Scaling of Feedback Signals
Voltage, current, and position feedback signals from the the Drive-On-Chip Reference
Design v16.0 hardware require scaling into the appropriate physical units in software
before you can use the data in the control loop

The design requires some scaling to convert the feedback samples from alternative
ADCs (e.g. sigma-delta ADCs versus MAX10 ADCs) into the same units for use in the
FOC algorithm. Also the design requires scaling to convert current and voltage
feedback values to the units expected by DC-DC module. The design treats some
feedback as "dimensionless" data and scales it into a convenient range (e.g. signed
16-bit integer) for use in the control loop. The reference design presents data for
diagnostic purposes in a GUI provided as a System Console Toolkit. The .tcl toolkit
script DOC_debug_gui.tcl, which creates this GUI, performs further scaling into
physical units for waveform displays.

5.1 Signal Sensing in Sigma-Delta and MAX 10 Integrated ADCs

The Drive-On-Chip Reference Design v16.0 configures the MAX 10 ADCs as a dual ADC
with sequencer and sample store using the internal 2.5 V reference. It uses 16
channels, channels 1 to 8 on each of the ADC submodules.

Each MAX 10 ADC submodule converts the 8 input channels in sequence. The MAX10
ADC Qsys component configures the sequence. Intel chooses the order in which the
Drive-On-Chip Reference Design v16.0 connect signals to the ADC inputs and the
sequence in the Qsys component to minimize skew between the most crucial feedback
samples for motor phase

Sigma-delta modulators on the power board convert analog signals to a one-wire
digital bitstream. The design demodulates or filters the bitstream in the FPGA. The
FPGA uses two types of sigma-delta filter IP in the FPGA, ADC modules and DC link
modules, each with different scaling and offset.

The reference design downloads and filters all sigma delta inputs in parallel so no
skew exists between the samples that it feeds to the software application.

Each ADC type has a different input and output ranges with the corresponding 'C' data
type. The sigma-delta ranges are the same for the Tandem Motion-Power 48 V Board
and the FalconEye power board.

Table 4. ADC Output Data

ADC Type Input Range Count Range C Data type

Sigma-delta ADC -320…+320mV -32768…+32767 Signed 16-bit

Sigma-delta DC link 0…+320mV 0…+32767 Unsigned 16-bit

MAX 10 0…2.5V 0…4097 Unsigned 16-bit
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The input current and DC bus current are only available via sigma-delta ADCs.

Position feedback samples are scaled to a 23 bit unsigned integer, for consistency
across all encoder types supported by this and previous Drive-On-Chip reference
designs.

Table 5. ADC Scaling
This table shows the ADC scaling for all signals, ADC type and board revision. The scaling depends on the way
the power board processes the signals (e.g., value of current shunts, scaling, and offset in sense amplifiers).

Feedback Quantity Sigma Delta
Interface IP

Sigma Delta Scaling
for Tandem Motion

Power Board

Sigma Delta Scaling
for FalconEye
Power Board

MAX 10 Scaling for
Tandem Motion

Power Board

Motor Phase Voltages ADC interface 545 counts/A N/A 67.7 counts/V

DC Bus Voltage ADC 545 counts/V - 67.7 counts/V

Input Voltage DC Link 895 counts/V N/A 223 counts/V

Input Current DC Link 256 counts/A N/A N/A

DC-DC Inductor
Current

ADC interface 717 counts/A N/A 57.3 counts/A

DC Bus Current DC Link 1638 counts/A N/A N/A

Motor Phase Currents ADC interface 1024 counts/A - 81.9 counts/A

5.2 About Signal Scaling in the Drive-On-Chip Reference Design
v16.0 Software

The software performs scaling to:

• Normalize sigma-delta and MAX 10 ADC samples for use in the FOC algorithm

• Apply zero offsets

• Scale feedback samples to the units required by the DC-DC module

• Position feedback scaling
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Figure 3. Signal Scaling Architecture
This figure shows a simplified block diagram of the scaling in the software application
supporting the Tandem Motion-Power 48 V Board. The FalconEye power board uses a
simplified architecture with fewer feedback quantities and only sigma-delta ADCs
available.
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Scaling of Motor Phase Current Samples

The design treats motor phase current samples as dimensionless numbers in the FOC
algorithm, rather than real current measurements.

To compensate for the differences in signal conditioning between the different ADCs,
the design scales MAX10 ADC samples as it reads them from the ADC to normalize
them to represent the same physical quantity as the sigma-delta ADC samples.

Table 6. Scaling of MAX 10 Motor Phase Current Samples
This table shows the ADC responses for the motor phase currents and the scaling applied to the MAX 10 ADC
samples to normalize them to the Sigma-Delta samples. The scaling is also shown with a power-of-2 divisor to
simplify integer arithmetic.

Item Sigma-Delta MAX 10

Motor Phase Currents 1024 counts/A 81.9 counts/A

Scaling 1 1024/81.9 or 12803/1024

Scaling for DC-DC Converter Feedback Samples

Table 7. DC-DC IP Feedback Inputs
The requirements for the voltage and current feedback to the DC-DC converter IP.
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Quantity VHDL data type Scaling

Voltage_fdbk sfix13 0.025V=1 or 40 counts/V

current_fdbk_a sfix13 0.01A=1 or 100 counts/A

current_fdbk_b sfix13 0.01A=1 or 100 counts/A

Table 8. Scaling of DC-DC Converter Feedback Samples
The table shows the required scale factors tthat the design calculates.

Item Sigma Delta MAX 10

DC Bus Voltage 545 counts/V 67.7 counts/V

Scaling 40/545 or 301/4096 40/67.7 or 605/1024

Inductor current 717 counts/A 57.3 counts/A

Scaling 100/717 or 143/1024 100/57.3 or 1787/1024

Calculation of Zero Offsets

Offsets error arise in the ADC conversion process from a number of factors, including

• Component tolerance in sense circuits

• Offsets in sense amplifiers

• Errors in Vdd supply to sense amplifiers and ADCs

• Offsets in the ADC converters

Offsets are most noticeable when converting low level signals where they lead to a
larger error in percentage terms. For the most crucial feedback, the design attempts
to calculate and correct for the offsets.

Motor Phase Current Zero Offset

The design calculates the zero offset for the motor phase current during startup. the
design samples a number of conversions while no motor current is flowing. The design
averages the samples to calculate the offset and applies them as a correction to the
offset register in the sigma delta ADC module, or stores them in the drive_params
structure for use in software for the MAX10 ADCs.

Inductor Current Zero Offset on Tandem Motion Power Board

You cannot shut off the current flow through the DC-DC inductors. The design
calculates approximate offsets from the average of the offsets previously calculated
for the motor phase currents. The design applies power to all the converters from the
same Vdd supply and in the same ambient surroundings.

5.3 Scale Factors for the Drive-On-Chip Reference Design v16.0 in
the System Console Toolkit

The Drive-On-Chip Reference Design v16.0 applies scale factors to signals in the
system console toolkit for diagnostic display in human readable, physical units (e.g.
volts, amps).
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Table 9. Scale Factors in System Console
This table shows the scale factors that the GUI uses, based on the scaling of the motor phase currents as in
Scaling of Motor Phase Current Samples.

Item Sigma Delta Scaling MAX 10 Scaling

Motor Phase Voltages 545 counts/A 67.7 counts/V

DC Bus Voltage 545 counts/V 67.7 counts/V

Input Voltage 895 counts/V 223 counts/V

Input Current 252 counts/A N/A

Inductor Current 717 counts/A 57.3 counts/A

DC Bus Current 1638 counts/A N/A

Motor Phase Currents 1.024 counts/mA 1.024 counts/mA

Table 10. Scale Factors for Id and Iq in System Console
The table shows that scaling of Id (requested and actual) and Iq (requested and actual) in the GUI is the same
as the motor phase current scaling

Item Sigma Delta Scaling (counts/mA) MAX 10 Scaling (counts/mA)

Id Direct Current 1.024 1.024

Iq Quadrature Current 1.024 1.024

SVM Voltage

The design calculates the maximum count of the PWM from the the PWM frequency,
and passes it to the software from the system.h header file generated with the Nios
II board support package (BSP). The maximum count varies with the PWM frequency
and sample rate and is (PWM frequency in Hz)/( (Sample rate) *1000). For example,
with a PWM frequency of 333 MHz and a sample rate of 16 kHz the maximum count is
20,833.

Voltage demand signals for the PWM IP have a full-scale value equal to the maximum
count, so setting the voltage demand to the maximum count value achieves 100%
duty cycle and 100% of DC link voltage. Setting the voltage demand to 0 achieves 0%
duty cycle and 0% of the DC link voltage. By convention, voltages for display purposes
are centred around 0. For example, if the DC link voltage is 48 V voltage demand
signals between 0 and maximum count map to 0 to +48 V outputs, but these signals
are offset and show in System Console as -24 V to +24 V.

Using the above example of 333 MHz PWM and 16 kHz sample rate for the Tandem
Motion-Power 48 V Board, in System Console:

Offset 20,833/2 = 10,417

Scaling 10,417/24 = 529

Related Links

About Signal Scaling in the Drive-On-Chip Reference Design v16.0 Software on page
26
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6 Motor Control Software
The Drive-on-Chip Reference Design v16.0 motor control software is in C, runs under
the Micrium µC/OS-II real-time Operating System on the Nios II processor, and is in
two parts.

The BSP is generated from the Qsys system via the .sopcinfo file, which contains a
description of the system interconnectivity and module base addresses. The design
includes drivers for Nios II peripherals that the Nios II Hardware Abstraction Layer
(HAL) supports.

The application program comprises a number of threads handling initialization, status
reporting, and communication functions and an Interrupt Service Routine (ISR),
triggered by the PWM timebase, which covers the real-time aspects of running the
motor control FOC algorithm. The design includes header files and basic drivers for
motor control peripherals that the NIOS II HAL does not directly support.

Doxygen generated HTML help files are in the software\source\doxygen directory.
Open the index.html file in a browser to view the help files.
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Figure 4. Main Program
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Figure 5. IRQ Routine

Read position encoder

Convert mechanical position
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Calculate position  PI controller 
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Related Links

Rebuilding the Drive-On-Chip Reference Design v16.0
Instructions to rebuild the BSP after making hardware changes and rebuilding the
application software.
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7 Functional Description
The Drive-On-Chip Reference Design v16.0 consists of two main elements: Qsys, DSP
Builder, IP cores, and RTL sources compiled into an FPGA programming file; and C
source code compiled to run on a Nios II processor in the FPGA.

The Qsys system consists of:

• Nios® II processor subsystem

• DC link monitors

• MAX 10 modular dual ADC

• DC-DC converter (tandem motion-power project variants)

• FOC subsystem

• One or two motor drive axes comprising the following motor control peripheral
components:

— 6-channel PWM

— Drive system monitor

— Quadrature encoder interface (Tandem Motio- Power 48 V Board only)

— Resolver SPI interface (Tandem Motion-Power 48 V Board only)

— ADC interface

— Encoder interface (BiSS or EnDat, FalconEye 2 HSMC only)
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Figure 6. Qsys System Top-Level Design for Drive-On-Chip Reference Design v16.0

Figure 7. Qsys System for a Drive Axis

Figure 8. Qsys System for DC-DC Converter
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7.1 Nios II Processor Subsystem

The Drive-On-Chip Reference Design v16.0 Nios II processor subsystem offers a fully
functional processor system with debugging capabilities:

The Nios II processor subsystem comprises the following Qsys components:

• Nios II fast processor

• Floating-point hardware custom instructions (optional)

• Tightly-coupled instruction and data memory

• JTAG master

• Performance counters

• DDR controller

• MOSFET gate driver SPI (Tandem Motion Power Board only)

• JTAG UART

• System console debugging RAM

• Debugging dump memory

The ISR uses the tightly-coupled memory blocks for code and data to ensure fast
predictable execution time for the motor control algorithm.

The Nios II subsystem uses the JTAG master and debug memories to allow real-time
interactions between System Console and the processor. The reference design uses
the System Console debugging RAM to send commands and receive status
information. The debugging dump memory stores trace data that you can display as
time graphs in System Console.

7.2 Six-channel PWM Interface

The Drive-On-Chip Reference Design v16.0 six-channel PWM interface operates as
three pairs of outputs, with each pair operating differentially to drive the upper and
lower power transistors (e.g., IGBT or MOSFET driven via external drivers) in a half-
bridge power stage.

The PWM interface operates with a PWM carrier clock of 333 MHz for high resolution
control of the MOSFET switching times.

The PWM interface ensures a dead time between switching to ensure both outputs are
not high at the same time; the dead time prevents short circuit “shoot-through” in the
power transistors. The input clock and a PWM counter set the PWM frequency. The
counter alternately ramps up from zero to a maximum value and ramps down from
the maximum value to zero. The sequence is as follows:

0, 1, 2, … max - 1, max, max - 1, … 2, 1, 0, …
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Figure 9. PWM Counter Value
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The maximum value of the counter ramp, max, is software configurable. The PWM
frequency is fPWM = fCLK/(2 x max)

The 16-bit counter resolution is sufficient to generate an 8-kHz PWM output. The
design generates high- and low-side drive signals for the insulated gate bipolar
transistor (IGBT) module by comparing the ramp counter value with the values you
set in the PWM threshold configuration registers. The design inserts a dead period
between the switching of the upper and lower drive signals according to the value set
in the PWM blocking time configuration register.

The design sets carrier_latch output signal high for one clock cycle when the PWM
counter is at 0 or max. This signal triggers a position encoder to take a position
reading.

The start output signal is a trigger for the ADC IP to start conversion. The trigger_up
configuration register sets the PWM count value and the start signal is high for one
clock cycle while the PWM is counting up. The trigger_down configuration register sets
the PWM count value and the start signal is high for one clock cycle while the PWM is
counting down. Set the trigger_up and trigger_down registers symmetrically to ensure
a regular ADC sample position offset before the reversal point of the counter. In other
words, trigger_up = MAX - offset, and trigger_down = offset.

The design calculates the PWM blocking time configuration register as pwm_block =
dead time x fCLK. Dead time refers to the time when the design turns off both upper
and lower transistors, to prevent short circuits. You must obtain specific dead time
values for the specific IGBT or MOSFET module you are using. For example, with a
dead time requirement of 2μs and a PWM module clock of 333 MHz, the pwm_block
value is 666 (=2μs x 333 MHz. Figure 5 shows PWM output generation (including dead
time).
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Figure 10. PWM Output Generation (Including Dead Time)

... 100 101 102 ... ...151149 150

100

50

PWM Threshold

Block Time

PWM Count

PWM High

PWM Low
Dead Time

Based on the PWM counter value, the PWM component generates configurable timing
output strobes for triggering ADC conversion for feedback-current readings. Configure
the ADC start pulse to perform the conversion during the quietest period of the PWM
cycle away from PWM switching events (around the min and max values of the PWM
counter).

Figure 11. Configurable Timing Output Strobes
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7.3 EnDat Encoder Interface

The reference design uses an evaluation version of the EnDat IP core version 2.2 from
Mazet to read from the EnDat absolute position encoder attached to the motor. The
reference design configures the EnDat IP core to respond to the trigger output that
the PWM generates and reads a new position value.

The EnDat IP core requires a strobe to capture a position reading at a time
synchronized with the ADC interface. The reference design generates the EnDat strobe
at the exact reversal point of the PWM without offset.

Note: The reference design connects the strobe signal between the EnDat and PWM in the
top level Verilog HDL design, not in the Qsys system.
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Related Links

Mazet
For more information about and to purchase a license for the EnDat IP core

7.4 BiSS Encoder Interface

The reference design uses an evaluation of the BiSS Master IP core version 119 from
iC-Haus to read from the BiSS absolute position encoder attached to the motor. The
reference design configures the BiSS IP core to respond to the trigger output that the
PWM generates and reads a new position value. The BiSS IP core can communicate
with any device complying with the BiSS standard. However, Altera configures the
reference design to work with the Hengstler AD36 series of BiSS B encoders.

The components\biss_OCP directory includes the datasheet for the BiSS Master IP
core.

The BiSS IP core requires a strobe to capture a position reading at a time
synchronized with the ADC interface. The reference design generates the BiSS strobe
at the exact reversal point of the PWM without offset.

Note: The reference design connects the strobe signal between the BiSS and PWM in the top
level Verilog HDL design, not in the Qsys system.

Related Links

iC-Haus BiSS interface
For more information about and to license the BiSS Master IP core

7.5 DC Link Monitor

The Drive-On-Chip Reference Design v16.0 DC-link monitor uses an instance of the
sinc3 filter module, similar to the instance that the sigma-delta interface uses, to
monitor the DC-link voltage.

The design compares the software configurable reference values with the filtered DC-
link voltage value to determine if the DC-link voltage is within the expected range.
Status outputs indicate overvoltage and undervoltage conditions to external protection
circuitry or to activate an external chopper (brake) circuit.

ADC Interface Result

The design restricts the demodulated result of the DC-link monitor to a positive value
because the DC-link voltage cannot be negative. The design clips any negative result
after applying the offset correction to zero.

Offset Adjustment for DC-Link Monitor

The design adds offset values to demodulator results to represent the bipolar input
signal and to allow for zero-offset adjustment. The design specifies offset values in the
Offset register. During normal operation, the offset value is 16,384 and has double the
weighting of the offset value of the ADC interface. The design adjusts the offset value
to correct for zero-offset errors during calibration.
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7.6 Drive System Monitor

The Drive-On-Chip Reference Design v16.0 drive system monitor is an interlock
between the state of the system and the requested operation.

Application software writes to the drive system monitor to request a change of state.
The hardware may accept or decline the change of state request, depending on the
system status (for example, overvoltage status, undervoltage status, and current
measurements alter the system status). A subsequent read from the Status register
verifies if the design accepts the change of state.

The drive system monitor latches status signals from the system so the signals are
available as status register bits and direct outputs. For example, the direct outputs
can drive status LEDs.

7.6.1 Drive System Monitor States for the Drive-On-Chip Reference
Design v16.0

Table 11. Drive System Monitor States

State Name System State

0 Idle Reset state, moves immediately to preinit

1 Precharge PWM counter running, low side outputs enabled, voltage errors monitored

2 Prerun PWM counter running, low side outputs enabled, voltage and current errors
monitored

3 Run PWM counter running, low and high side outputs enabled, voltage and current
errors monitored

4 Error Error state, PWM counter running, outputs disabled

5 init PWM counter running, outputs disabled, voltage errors monitored

6 preinit PWM counter running, outputs disabled

7.7 Quadrature Encoder Interface

The Drive-On-Chip Reference Design v16.0 quadrature encoder interfaces monitors
and decodes the A, B and I signals from a quadrature encoder. The resulting output is
a count value representing the position of the motor shaft.

The quadrature encoder interface allows you to:

• Program maximum count value to match a wide range of encoders.

• Increment or decrement counter on each A or B input edge.

• Capture current count value on index pulse.

• Reset current on index pulse.

• Reverse direction of count, equivalent to swapping A and B inputs.

• Capture current count by an external strobe to synchronise with the PWM module
and ADC sampling.
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7.8 Sigma-Delta ADC interface

The Drive-On-Chip Reference Design v16.0 sigma-delta ADC interface samples the 20-
MHz 1-bit ADC serial input for 3 inputs. A decimating sinc3 filter in the FPGA then low-
pass filters the serial input. The sinc3 filter does not require hardware multipliers.

Sinc3 Filter

Figure 12. Sinc3 Filter Topology
The input samples pass through three integrator stages before a factor M decimates
them. The design reserves every Mth sample and discards M-1 samples. The design
passes the reserved samples through three differentiators to produce a final output
value.
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The pulse-width modulation (PWM) block triggers ADC conversion with a reset signal
that resets the filters and control logic. The design calculates:

• The direct-current gain of the sinc3 filter as GainDC = MK (where K = 3 for sinc3).

• The internal bus width of the filters as Internal bus width = 1 + Klog2M, to
account for word growth in the filter stages

• The output data rate for an input sample rate fS and decimation factor M as Data
rate = fS/M.

When the settling time satisfies and the ADC conversion completes, the design sends
an interrupt to the processor. The design calculates the performance of N-bit ADC as
SNR = 6.02N + 1.76dB, where SNR is the signal to noise ratio. Additional noise in the
system affects the performance value. The design calculates the effective number of
bits (ENOB) as ENOB = (SINAD - 1.76dB)/6.02, where SINAD is the signal to noise
and distortion. The design determines SNR, SINAD, and ENOB by decimation ratio.

The sinc3 filter requires a time period 3× longer than the time period of the output
data rate to settle. The standard settings of M=128 keeps the settling time short and
a deliver a suitable ENOB of 16bits. By choosing to synchronize sampling to the quiet
periods of the PWM waveform, signal quality is acceptable when sampled at 16 kHz
despite the theoretical output data rate of 156.2 kHz.

Table 12. Sinc3 Filter: Fs = 20 MHz

Decimation (M) GainDC Word Size Bus Width Data rate (kHz) Settling Time (µs) ENOB

8 512 9 10 2500 1.2 6.4

16 4096 12 13 1250 2.4 8.9

64 262,144 18 19 312.5 9.6 13.9

128 2,097,152 21 22 156.2 19.2 16.4

Two Filter Paths

The design has two separate filter paths: a control loop filter path and an overcurrent
detection filter path.
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The control loop filters are slower but more accurate than the overcurrent detection
filters with a software selectable decimation factor of M=128 or M=64. The control
loop filters have an offset correction feature for zero-offset correction. The filter output
is a signed 16 bit (2's complement) format.

The overcurrent detection filters are faster but less accurate than the control loop
filters with a software selectable decimation factor of M=16 or M=8. A software
configurable overcurrent output provides a direct output to disable the motor when
under hardware control.

The control loop and overcurrent detection filters use the same control bit for
decimation selection. The possible selections are:

• control loop M=128, overcurrent M=16

• control loop M=64, overcurrent M=8.

Clocks

The design performs synchronization between the ADC clock and the FPGA system
clock at the output stage before the design delivers output data in the Avalon-MM
interface slave registers.

The external ADC components require a clock source from the FPGA and return
samples synchronous to the FPGA-sourced clock. The same clock within the FPGA
drives the ADC filters.

You must apply appropriate timing constraints in the Quartus Prime software project
to guarantee correct sampling of the ADC interface data. Base the sampling on the
clock to output specification of the ADC.

7.8.1 Offset Adjustment for Sigma-Delta ADC Interface

Use the offset adjustment to calcualte the output voltages in the Drive-On-Chip
Reference Design v16.0.

Table 13. Sigma-Delta ADC Characteristics
The table describes typical characteristics of a sigma-delta ADC and the demodulated output of the sinc3 filter.
The output code is a positive value.

Analog Input Voltage Input (mV) Density of 1s Demodulated ADC Code (16-bit)

Full-scale range 640 - -

+ Full scale + 320 100% 65,535

+ Recommended input range + 200 31.25% 53,248

Zero 0 50% 32,768

- Recommended input range - 200 18.75% 12,288

- Full scale - 320 0% 0

The design adds offset values to demodulator results to represent the bipolar input
signal and to allow for zero-offset adjustment. The offset values are in the offset_u or
offset_w registers.

During normal operation, the offset value is 32,768, or 50% of the full-scale range, to
bring the demodulated result into the range of -32,768 to +32,767. The design
adjusts the offset value to correct for zero-offset errors during calibration.
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7.9 MAX 10 ADCs

The the Drive-On-Chip Reference Design v16.0 has dual MAX 10 ADCs with Avalon-MM
sample storage and threshold violation detection.

Software reads converted samples by software from an Avalon-MM slave interface.

Threshold violation errors are output on two Avalon-ST sources, one for each of the
ADC modules that make up the dual ADC.

To change the thresholds: edit the component settings in Qsys, regenerate the Qsys
project, and recompile in the Quartus Prime software.

Figure 13. MAX 10 Dual ADC with Avalon-MM Sample Storage and Threshold Violation
Detection
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Related Links

MAX 10 Analog to Digital Converter User Guide

7.10 MAX 10 ADC Threshold Sink

The Drive-On-Chip Reference Design v16.0 MAX 10 ADC threshold sink module
provides an interface between the Avalon-ST threshold sources of the MAX 10 dual
ADC and the drive system monitor modules.

The Avalon-ST sink interfaces capture threshold violation errors from the MAX 10 ADC.
Each Avalon-ST interface can indicate eight under- or over-threshold violations
corresponding to the eight channels of each of the two ADC modules that make up the
dual ADC.

The software selectively captures and latches errors for later checking and clearing.
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The design selectively enables latched errors for output to one or more drive system
monitor modules via the under and over conduits. The drive system monitors use the
error signals to safely shut down the DC-DC converter and one or more drive axes in
the event of an error condition such as overcurrent or overvoltage.

You can selectively set the error latches, to simulate error conditions, for test
purposes.

7.11 DC-DC Converter

The Drive-On-Chip Reference Design v16.0 DC-DC converter comprises power
electronics hardware on the Tandem Motion-Power 48 V Board:and IP in the MAX 10
FPGA

The power electronics hardware includes:

• Inductors

• MOSFET switches

• MOSFET gate drivers

• Current sensing

The IP includes:

• Current control loop

• Voltage control loop

• Avalon-MM slave interface for control and status

Altera developed the FPGA IP using Altera’s DSP Builder.

The DC-DC converter consists of 2 phases that provide bi-directional power flow from
a low voltage power source or battery (typically 12V DC) to a DC bus (typically 48V
DC) that feeds one or more motor drive inverters. The DC-DC converter provides the
boost function to increase the voltage. It also provides a buck function during periods
of regenerative braking to deliver power from the DC bus back to the low voltage
source (i.e. battery in this case).

The gate driving signals for the two phases are 180 degrees out of phase so that they
alternate in supplying current during buck-boost function, which gives smoother
output current and voltage.

The control consists of two independent inner current loops and an outer voltage loop
that regulates the DC bus voltage to a predetermined value (e.g. 48 V DC).
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Figure 14. DC-DC Converter Linear MATLAB Model
The figure shows the linear MATLAB model (lvdcdc_simpower.slx). The linear model
cannot generate VHDL, but you create it to provide a rapid simulation to develop
control dynamics and determine controller gains.

Figure 15. DC-DC Converter: DC bus Voltage, Inductor Currents, Motor Load Current
(stimulus)
The figure shows the linear MATLAB model (lvdcdc_simpower.slx) and simulation.
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Figure 16. DSP Builder Top-level Model
The DSP Builder model (lvdcdc_adsp_vhdl.slx) performs the same simulation as
above, but includes Altera DSP Builder blocks that allow simulation of VHDL and auto-
generation of VHDL code.

The top-level model has the DC-DC control block and a simulator of the DC-DC
converter hardware simulator.

The reference design instantiates the DSP Builder- generated VHDL entity in a
manually-created wrapper that adds an Avalon-MM register slave and conduit signals
and creates a Qsys component. You can instantiate the Qsys component in a Qsys
system and connected to the Nios II processor and other modules. The register slave
allows software access to the DC-DC converter parameters, control, and status. The
conduits connect to various system-wide control and status signals that are outside
the software domain.

The Qsys wrapper implements safety features, that you may use with external logic,
to protect the system in the case of a malfunction.

The design gates the following two independent enable sources that enable the DC-DC
converter.

• Set the enable bit in the control register and

• Assert the enable_in input.

To operate correctly, the DC-DC converter requires regular feedback samples of the DC
link voltage and the currents in the two switching phases (inductor currents) that you
write through the Avalon-MM slave interface.

The sample timeout watchdog shuts down the DC-DC converter if it does not receive a
new sample within a programmable timeout period. Each time you set the control
register enable bit, or you write a sample to the fb_voltage register, the watchdog
timer loads from the timeout register. The watchdog decrements on each cycle of the
10 MHz avs_clk input clock. If the watchdog decrements to zero, the enable bit of
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the control register is cleared, turning off the DC-DC converter, and the
timeout_latch output is asserted. The design clears the timeout_latch output when
it sets the enable bit.

7.11.1 DC-DC Control Block

The Drive-On-Chip Reference Design v16.0 DC-DC Converter block contains a DC-DC
Control block

Figure 17. DSP Builder DC-DC Control Block
The figure shows the expanded DC-DC Control block

The DC-DC control block has the portion of the simulation for which you generate
VHDL code. The ChannelIn and ChannelOut blocks are the port interface for the
VHDL code. The MATLAB Simulink inport and outport signals define the VHDL signal
names, and the VHDL data formats are the signal formats that you typically set with
the Convert block.

The Convert DSP block sets the data format. This model uses signed-fractional data
format for the feedback signals and the control math inside the DC-DC Control block.

For instance, the voltage feedback signal voltage_fdbk comes into the DC-DC
Control block with data format sfix13 and scaling “2^0” (“13bits . 0bits”, where
13bits includes sign bit), which matches the 12 bit ADC twos-complement format. DSP
Builder also uses twos-complement maths to perform any calculations.

After the signal voltage_fdbk is inside the DC-DC control block the resolution is
increased with another convert block to “sfix(27)” with output scaling “2^-12”
(“15bits . 12bits").

In the PWM block, the design generates a triangular wave bounded within [-1.1] using
a SR latch and counter counting at the frequency of the system clock of 10 MHz. After
every 5000 freqz_kHz steps, the counter changes the direction of up-down counting,
giving a triangular wave of frequency (freqz_sync*clk ) /10000, which has the value of
freqz_kHz and the unit of 10000/10MHz=kHz.(because clk=10MHz). The design
compares the triangular signal with current control signals bounded within [-0.9, 0.9]
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to produce pulses for driving gates for each phase. Dead-time of five samples time
duration (for clk=10MHz) is at every transition of gate driving signals. You can extend
the dead time by increasing the number of sample delays.

The design describes the hardware as functions of gate driving signals and
input(battery) voltage in forms of Simulink math/logic operation blocks, giving:

• Output current as Ia/b=(V_battery - not_PWM_a/b_l* Vout)*1/L*1/s

• Output voltage as Vout=Vc + (Ia*not_PWM_a + Ib*not_PWM_b -
I_load*HLPF)*1/C*1/s,

where I_load is a pre-specified waveform and HLPF is the transfer function of a low
pass filter with a 1.6 kHz cut-off.

If the design asserts the fault input to the DC-DC converter, the enable bit in the DC-
DC converter’s control register is cleared and the DC-DC converter turns off. The
enable bit remains cleared, and writing to the control register cannot set it again until
the system negates the fault input.

The port map for the DSP Builder-generated VHDL entity is:

entity lvdcdc_adsp_vhdl_DC_DC_Control is
    port (
        in1 : in std_logic_vector(0 downto 0);  -- ufix1
        in2 : in std_logic_vector(7 downto 0);  -- ufix8
        CMD_DC_in : in std_logic_vector(13 downto 0);  -- ufix14
        voltage_fdbk : in std_logic_vector(12 downto 0);  -- sfix13
        current_fdbk_a : in std_logic_vector(12 downto 0);  -- sfix13
        current_fdbk_b : in std_logic_vector(12 downto 0);  -- sfix13
        freq_khz : in std_logic_vector(13 downto 0);  -- ufix14
        enable : in std_logic_vector(0 downto 0);  -- ufix1
        open_0_close_1 : in std_logic_vector(0 downto 0);  -- ufix1
        duty_0_100 : in std_logic_vector(13 downto 0);  -- ufix14
        pwm_sync_n : in std_logic_vector(0 downto 0);  -- ufix1
        pgain_voltage : in std_logic_vector(13 downto 0);  -- ufix14
        igain_voltage : in std_logic_vector(13 downto 0);  -- ufix14
        pgain_current : in std_logic_vector(13 downto 0);  -- ufix14
        igain_current : in std_logic_vector(13 downto 0);  -- ufix14
        bidir_en : in std_logic_vector(0 downto 0);  -- ufix1
        out1 : out std_logic_vector(0 downto 0);  -- ufix1
        out2 : out std_logic_vector(7 downto 0);  -- ufix8
        gate_a_l : out std_logic_vector(0 downto 0);  -- ufix1
        gate_a_h : out std_logic_vector(0 downto 0);  -- ufix1
        gate_b_l : out std_logic_vector(0 downto 0);  -- ufix1
        gate_b_h : out std_logic_vector(0 downto 0);  -- ufix1
        OV : out std_logic_vector(0 downto 0);  -- ufix1
        OC : out std_logic_vector(0 downto 0);  -- ufix1
        clk : in std_logic;
        areset : in std_logic
    );
end lvdcdc_adsp_vhdl_DC_DC_Control;

7.11.1.1  DC-DC Model and VHDL Entity Signal Names and Data Format for the
Drive-on-Chip Reference Design v16.0
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Table 14. DC-DC Model and VHDL Entity Signal Names and Data Format

Signal Name Data Format Scaling Default/Notes

Inputs

In1 ufix1 0

In2 ufix8 0

CMD_DC_In ufix14 1 V = 1 48

voltage_fdbk sfix13 0.025 V = 1 or 1 V = 40

current_fdbk_a sfix13 0.01 A = 1 or 1 A = 100

current_fdbk_b sfix13 0.01 A = 1 or 1 A = 100

freq_khz ufix14 62

enable ufix1 1

open_0_close_1 ufix1 1

duty_0_100 ufix14

pwm_sync_n ufix1 1 (low to reset PWM counter)

pgain_voltage ufix14 1/100 300 (* 1/100 = 3)

igain_voltage ufix14 1e-7 (1/fclk) 4000

pgain_current ufix14 1/1000 20 (* 1/1000 = 0/02)

igain_current ufix14 1e-7 (1/fclk) 25

clk std_logic 10 MHz

bidir_en ufix1 0 for PS, 1 for battery

areset std_logic 0

Outputs

out1 ufix1

out2 ufix8

gate_a_h ufix1 MOSFET gate signal

gate_a_l ufix1 MOSFET gate signal

gate_b_h ufix1 MOSFET gate signal

gate_b_l ufix1 MOSFET gate signal

ov ufix1 High = overvoltage

oc ufix1 High = overcurrent

7.11.2 Generating VHDL for the DSP Builder Models for the DC-DC
Converter

1. Start DSP Builder.

2. Change the directory to the ip\dspba\two_phase_dc_dc.

3. If you want a different numeric precision, edit the setup_<Simulink Model>.m file
corresponding to the model before opening it.

4. Load the model.
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Check the status of the orange DSP Builder folding block. If the model includes it,
folding is enabled. If it is removed or commented out, the model does not use
folding.

5. Click Simulation ➤ Start .
DSP Builder generates the VHDL files in ip\dspba\two_phase_dc_dc\rtl.

7.12 Motor Control Modes

The Drive-On-Chip Reference Design v16.0 supports various control algorithms and
commutation modes.

The design supports:

• Open-loop volts/Hz speed control with sinusoidal commutation

• Open-loop volts/Hz speed control with trapezoidal commutation

• Speed and position control with field-oriented current control (FOC), sinusoidal
commutation with absolute encoder (EnDat or BiSS), quadrature encoder or
resolver feedback

• Sensorless speed control with field-oriented current control using a sliding-mode
speed and position observer using current feedback

• Speed control with trapezoidal commutation using Hall sensor feedback

Open Loop

The design supports open loop control using sinusoidal commutation and trapezoidal
commutation. the design uses Volts per Hertz control in which the voltage the design
applies to the motor increases with increasing frequency. During each Interrupt the
interrupt service routine (ISR) updates a ramp generator to represent the motor
electrical angle based on the previous angle, desired speed, and sample rate. The ISR
calculates the voltage to apply using a Volts per Hertz control gain based on the
frequency (motor speed) and motor parameters. In open loop sinusoidal commutation,
the ISR applies the inverse Park Transform and SVM function from FOC to generate
sinusoidal commutation.

Figure 18. Open Loop Sinusoidal Commutation
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Figure 19. Open Loop Trapezoidal Commutation
In open loop trapezoidal commutation, the ISR calculates which of 6 sectors the
electrical position is currently in, to determine how the design drives the PWM outputs.
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FOC with Position Sensor Feedback

The design supports FOC sensor control where the motor position is feeds back to
form a closed loop with position and speed PI control. The design may sense the
motor position by absolute (resolver, EnDat, BiSS) or incremental (quadrature)
encoders.

The design samples and uses the motor phase currents as feedback to the FOC
algorithm.

Figure 20. FOC with Position Sensor Feedback
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FOC Sensorless

The design supports FOC sensorless control in which the design samples and uses
both the motor phase voltages and currents as the feedback to the control loop.
Signals Vpα and Vpβ are derived from the phase voltage calc block to allow for scaling
of the phase voltages with respect to the DC bus voltage feedback. DC bus voltage
may change with a slow time constant (relatively) during quick acceleration (bus
voltage drop) or regeneration (bus voltage spike) events. If you do not expect the bus
voltage to change much (e.g. large bus capacitance), you can use Vpα and Vpβ
generated from the inverse Clarke transform. The speed estimator is integrated with
the sliding mode observer (SMO) estimator to allow a second order observer to
calculate both estimated angle and estimated speed together. In FOC sensorless
mode, the motor starts initially in open loop with a requested speed and switches to
sensorless mode after a preset time to allow the SMO to settle.
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Figure 21. FOC Sensorless Control
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SMO Parameters

The design derives the SMO parameters from the motor parameters for each motor
type, such as resistance and inductance. The SMO parameters, and default values,
are:

Table 15. SMO Parameters

Parameter Description

Lpf_Gain = 0.10 The final two stages of the SMO are a low-pass filter on each component of the estimated
BEMF followed by an inverse tangent (arctan observer). The output of the inverse tangent is
the estimated angle. The parameter Lpf_Gain sets the cutoff frequency of the low-pass filter.
Lpf_Gain = 2*pi*fc*Ts
where: Ts is the sample period and fc is the desired cutoff frequency.

damping_coefficient = 0.84 These are both parameters of the angle tracking observer, which takes in both unfiltered
components of the estimated BEMF, extracts the angle and filters in one module. The angle
tracking observer has no speed dependent phase lag, unlike the arctan observer.natural_frequency = 400

Hys_Gain = 0.55 This parameter sets the sliding mode gain on the current observer. This observer is
responsible for estimating the BEMF signals that it ultimately feeds into the angle tracking
observer.

Trapezoidal

The design supports trapezoidal control of BLDC motors using Hall sensor feedback on
the Tandem Motion Power 48 V Board. The software supports Duty Mode and Torque
Mode, but the demonstration GUI only uses Velocity Mode. The software
reconstructs the motor current from the individual phase current readings using the
Hall encoder state to determine which phase current is relevant.
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Figure 22. Trapezoidal Commutation Using Hall Sensor Feedback
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7.13 Generating VHDL for the DSP Builder Models for the DC-DC
Converter

1. Start DSP Builder.

2. Change the directory to the ip\dspba\two_phase_dc_dc.

3. If you want a different numeric precision, edit the setup_<Simulink Model>.m
file corresponding to the model before opening it.

4. Load the model.

5. Check the status of the orange DSP Builder folding block. If the model includes it,
folding is enabled. If it is removed or commented out, the model does not use
folding.

6. On the Simulation menu, click Start.

DSP Builder generates the VHDL files in ip\dspba\two_phase_dc_dc\rtl.

7.14 FOC Subsystem

The Drive-On-Chip Reference Designs use DSP Builder to generate the HDL code for
floating-point and fixed-point implementations of the field-oriented control (FOC)
algorithm. The Nios II processor uses this DSP Builder-generated FOC IP as a
coprocessor and moves the data between the FOC IP and the peripherals .

Note: Alternatively, the reference design includes software implementations of the FOC
algorithm with the same FOC functionality. You can select which implementation to run
using the Debug GUI. In all FOC implementations, the reference design performs the
reverse Clarke transform as part of the SVM function in software.
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FOC controls a motor's sinusoidal 3-phase currents in real time to create a smoothly
rotating magnetic flux pattern, where the frequency of rotation corresponds to the
frequency of the sine waves. FOC controls the current vector to keep:

• The torque-producing quadrature current, Iq, at 90 degrees to the rotor magnet
flux axis

• The direct current component, Id, (commanded to be zero) inline with the rotor
magnet flux.

The FOC algorithm:

1. Converts the 3-phase feedback current inputs and the rotor position from the
encoder into quadrature and direct current components using Clarke and Park
transforms.

2. Uses these current components as the inputs to two proportional and integral (PI)
controllers running in parallel to limit the direct current to zero and the quadrature
current to the desired torque.

3. Converts the direct and quadrature voltage outputs from the PI controllers back to
3-phase voltages with inverse Clarke and Park transforms.

The FOC algorithm includes:

• Forward and reverse Clarke and Park transforms

• Direct and quadrature current

• Proportional integral (PI) control loops

• Sine and cosine

• Saturate functions

7.14.1 DSP Builder Model for the Drive-On-Chip Reference Designs

The top-level model is a simple dummy testbench with constant inputs of the correct
arithmetic types to control hardware generation, which includes the FOC algorithm
model.
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Figure 23. DSP Builder Model
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The FOC algorithm comprises the FOC algorithm block and a latch block for
implementing the integrators necessary for the PI controllers in the FOC algorithm.
DSP Builder implements the latches outside because of limitations of the folding
synthesis.

The reference design includes fixed-point and floating-point models that implement
the FOC algorithm.

Each model calls a corresponding .m setup script during initialization to set up the
arithmetic precision, folding factor, and target clock speed. The folding factor is set to
a large value to minimize resource usage.

Table 16. Default settings in Setup Script

Model Folding Factor Clock Speed (MHz) Input Precision Output Precision

Fixed point 500 100 sfix16En10 sfix32En10

Floating point 500 100 sfix32En10 sfix32En10

The following models generate the FOC block including the Avalon-MM interface:

• DF_float_alu_av.slx for floating-point designs

• DF_fixp16_alu_av.slx for fixed-point designs

Verification models stimulate the FOC algorithm using dynamically changing inputs:

• verify_DF_float_alu.slx

• verify_DF_fixp16_alu.slx

Closed-loop simulation models validate that the FOC correctly controls a motor in
simulation:
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• sim_DF_float_alu.slx

• sim_DF_fixp16_alu.slx

A Simulink library model contains the main FOC algorithm code, which the models
reference:

• foc_blocks.slx

7.14.2 Avalon-MM Interface

The Drive-On-Chip Reference Design DSP Builder-generated VHDL has a signal
interface that matches the connections in Simulink. In the DSP Builder models,
feedback currents, position feedback, torque command, and gain parameters are all
parallel inputs into the system and voltage commands are parallel outputs.

To allow direct connectivity in Qsys, the top-level DSP Builder design adds blocks to
terminate the parallel inputs and outputs and handshaking logic with an Avalon-MM
register map.

Figure 24. FOC Model integrated in Simulink with Avalon-MM Register Map
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DSP Builder generates a .h file that contains address map information for interfacing
with the DSP Builder model.

To run the DSP Builder model as part of the drive algorithm, a C function passes the
data values between the processor and DSP Builder. The handshaking logic ensures
synchronization between the software and hardware. The software sets up any
changes to hardware parameters such as PI gains, writes new feedback currents,
position feedback and torque command input data before starting the DSP Builder
calculation. The software then waits for the DSP Builder calculation to finish before
reading out the new voltage command data.

The ISR that runs the FOC algorithm calls the C function with an option to switch
between software and DSP Builder implementations at runtime.
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7.14.3 About DSP Builder

DSP Builder advanced blockset supports bit-accurate simulation and VHDL generation
of the full range of fixed-point and floating-point data types available in Simulink.
Floating-point data types give a high dynamic range, avoid arithmetic overflows, and
avoid the manual floating- to fixed-point conversion and scaling steps necessary in
algorithm development. You can optimize the data types to adjust hardware usage
and calculation latency, and run Simulink simulations to confirm adequate
performance.

After you develop the algorithm in Simulink, DSP Builder can automatically generate
pipelined HDL that it targets and optimizes to the chosen FPGA device. You can use
this VHDL in a HDL simulator such as ModelSim to verify the generated logic versus
Simulink and in the Quartus Prime software to compile the hardware. DSP Builder
gives instant feedback of the VHDL's logic utilization and algorithm latency in
automatically generated Simulink reports.

7.14.4 DSP Builder Folding

DSP Builder generates flat parallel models that can receive and process new input data
every sample time. However, designs which have a much lower sample rate than the
FPGA clock rate, such as this FOC design (16 kHz versus 100 MHz), can use the DSP
Builder folding feature to trade off an increase in algorithm latency for a decrease in
the used FPGA resources. This feature allows the design to use as much hardware
parallelism as necessary to reach the target latency with the most cost effective use of
FPGA resources without making any changes to the algorithm.

The DSP Builder folding feature reuses physical resources such as multipliers and
adders for different calculations with the VHDL generation automatically handling the
complexity of building the time division multiplexed (TDM) hardware for the particular
sample to clock rate ratio.

Figure 25. Unfolded and Folded Hardware Examples
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7.14.5 DSP Builder Model Resource Usage

For the Drive-On-Chip Reference Design v16.0, Altera compared the FOC algorithm as
a single precision floating-point model and a model that uses the folding feature.
When you use folding, the model uses fewer logic elements (LEs) and multipliers but
has an increase in latency. In addition, a fixed-point model uses significantly fewer LEs
and multipliers and has lower latency than the floating-point model.

7 Functional Description

Drive-On-Chip Reference Design v16.0
56



Altera compared floating- and fixed-point versions of the FOC algorithm with and
without folding. In addition, Altera compared using a 26-bit (17-bit mantissa) instead
of standard single-precision 32-bit (23-bit mantissa) floating point implementation.
26-bit is a standard type within DSP Builder that takes advantage of the FPGA
architecture to save FPGA resources if this precision is sufficient.

Cyclone V devices use ALMs instead of LEs (one ALM is approximately two LEs plus
two registers) and DSP blocks instead of multipliers (one DSP block can implement
two 18-bit multipliers or other functions).

Table 17. Resource Usage Comparison for Cyclone V Devices

Design Folding Precision ALMs DSPs Latency (us) M10K

Floating-point No 32 9968 31 0.99 19

Floating-point Yes 32 3840 4 1.77 1

Floating-point No 26 8995 31 0.99 15

Floating-point Yes 26 3634 4 1.75 3

Fixed-point No 16 1979 24 0.22 2

Fixed-point Yes 16 2510 1 1.99 2

Table 18. Resource Usage Comparison for MAX 10 Devices

Design Folding Precision LEs Multipliers Latency (us) M9K

Floating-point No 32 20010 53 0.74 24

Floating-point Yes 32 6092 10 1.32 4

Floating-point No 26 15450 23 0.67 17

Floating-point Yes 26 4982 6 1.25 1

Fixed-point No 16 2567 12 0.13 2

Fixed-point Yes 16 2624 2 1.19 2

The results show:

• 26-bit floating-point precision uses fewer resources because datapaths are
narrower and simpler with reduced precision.

• Fixed-point designs use significantly fewer resources than floating-point designs.
Typically, implementfixed-point designs if you do not require the high dynamic
range that floating-point offers. However, floating-point designs avoid arithmetic
overflow during algorithm development and tuning.

• Fixed-point designs can achieve a processing latency down to 0.1 μs, which is
ideal for designs that require very high update frequencies.

• Folded designs use significantly fewer resources than designs without folding.
Folding increases latency to around 1 μs, which is still acceptable for the control
loop.

7.14.6 DSP Builder Design Guidelines

Use these design guidelines to reduce FPGA resource usage with folding.

In your design:
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• For fixed-point designs use the variable precision support in DSP Builder. Instead
of using classical 32-bit datapath, investigate the algorithm and reduce the
datapath to a dimension closer to the DSP block size.

• For fixed-point datapaths, disable bit growth for adders and subtracters. For
example, use 27-bit data-paths on Cyclone V devices. The bit width should provide
sufficient dynamic range for handling the values in the algorithm.

• Reduce the output of fixed-point multipliers to the same size as the inputs to
better integrate in the datapath.

• Use smaller components when available. For example, pure sin and cos blocks
require a range reduction stage. Use the smaller sin(pi*x) and cos(pi*x).

• Restructure a sin(pi*x) and a cos(pi*x) into a sin(pi*x) and sin(pi*(0.5-x)) to
allow folding to reduce resource usage.

• Ensure that the select line of a multiplexer does not use more bits than necessary.
For example, for a 2:1 multiplexer, the select line should be 1 bit.

7.14.7 Generating VHDL for the DSP Builder Models for the Drive-On-Chip
Reference Designs

1. Start DSP Builder.

2. Change the directory to the ip\dspba.

3. If you want a different numeric precision, edit the setup_<Simulink Model>.m file
corresponding to the model before opening it.

4. Load the model. Check the status of the orange DSP Builder folding block. If the
model includes it, folding is enabled. If it is removed or commented out, the model
does not use folding.

5. On the Simulation menu, click Start.

DSP Builder generates the VHDL files in ip\dspba\rtl (for Cyclone V devices) or
ip\dspba\rtlmax10 (for MAX 10 devices).

7.15 Signals

The signals connect various blocks in the Drive-On-Chip Reference Design v16.0

Table 19. Six-Channel PWM Interface Signals

Signal Name Direction Description

Avalon-MM Interface Signals

clk Input PWM and system clock input

reset_n Input System reset signal, active low

avs_read_n Input Avalon-MM read strobe, active low

avs_write_n Input Avalon-MM write strobe, active low

avs_address[3:0] Input Avalon-MM address bus

avs_writedata[31:0] Input Avalon-MM read data bus

avs_readdata[31:0] Output Avalon-MM write data bus

Conduit Signals

continued...   
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Signal Name Direction Description

pwm_enable Input PWM enable from drive system monitor

en_upper Input Upper switch enable from drive system monitor

en_lower Input Lower switch enable from drive system monitor

u_h Output Motor phase phase U upper gate drive

u_l Output Motor phase phase U lower gate drive

v_h Output Motor phase phase V upper gate drive

v_l Output Motor phase phase V lower gate drive

w_h Output Motor phase phase W upper gate drive

w_l Output Motor phase phase W lower gate drive

carrier latch Output Latch signal to position encoder

encoder_strobe_n Output Latch signal to position encoder

sync_in Input Synchronization signal for multiple PWM modules

sync_out Output Synchronization signal for multiple PWM modules

start_adc Output ADC start conversion signal

carrier[15:] Output PWM counter value

Table 20. DC Link Monitor Signals

Signal Name Direction Description

Avalon-MM Interface Signals

clk Input FPGA system clock input

clk_adc Input ADC clock input

reset_n Input System reset signal, active low

avs_read_n Input Avalon-MM read strobe, active low

avs_write_n Input Avalon-MM write strobe, active low

avs_address[3:0] Input Avalon-MM address bus

avs_writedata[31:0] Input Avalon-MM read data bus

avs_readdata[31:0] Output Avalon-MM write data bus

avs_irq Output Avalon interrupt

Conduit Signals

sync_dat Input Sigma-delta ADC bit stream

dc_link_enable Input Enable

overvoltage Input Overvoltage status

undervoltage Output Undervoltage status

chopper Output Chopper circuit gate drive
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Table 21. Drive System Monitor Interface Signals

Signal Name Direction Description

Avalon-MM Interface Signals

clk Input FPGA system clock input

reset_n Input System reset signal, active low

avs_read_n Input Avalon-MM read strobe, active low

avs_write_n Input Avalon-MM write strobe, active low

avs_address[3:0] Input Avalon-MM address bus

avs_writedata[31:0] Input Avalon-MM read data bus

avs_readdata[31:0] Output Avalon-MM write data bus

Conduit Signals

overcurrent Input Overcurrent status

overvoltage Input Overvoltage status

undervoltage Input Undervoltage status

chopper Input Chopper status

dc_link_clk_err Input Clock monitor status

igbt_err Input IGBT error status

error_out Output Error output

overcurrent_latch Output Latched vercurrent status

overvoltage_latch Output Latched overvoltage status

undervoltage_latch Output Latched undervoltage status

dc_link_clk_err_latch Output Latched clock monitor status

igbt_err_latch Output Latched IGBT error status

chopper_latch Output Latched chopper status

pwm_control[2:0] Output PWM control

Table 22. Quadrature Encoder Interface Signals

Signal Name Direction Description

Avalon-MM Interface Signals

clk Input FPGA system clock input

reset_n Input System reset signal, active low

avs_read_n Input Avalon-MM read strobe, active low

avs_write_n Input Avalon-MM write strobe, active low

avs_address[3:0] Input Avalon-MM address bus

avs_writedata[31:0] Input Avalon-MM read data bus

avs_readdata[31:0] Output Avalon-MM write data bus

Conduit Signals

continued...   
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Signal Name Direction Description

strobe Input Capture strobe

QEP_A Input Quadrature phase A

QEP_B Input Quadrature phase B

QEP_I Input Quadrature index

Table 23. Sigma-Delta ADC Interface Signals

Signal Name Direction Description

Avalon-MM Interface Signals

clk Input FPGA system clock input

clk_adc Input ADC clock input

reset_n Input System reset signal, active low

avs_read_n Input Avalon-MM read strobe, active low

avs_write_n Input Avalon-MM write strobe, active low

avs_address[3:0] Input Avalon-MM address bus

avs_writedata[31:0] Input Avalon-MM read data bus

avs_readdata[31:0] Output Avalon-MM write data bus

Avs_irq Output Interrupt request

Conduit Signals

start Input Start conversion signal

sync_dat_u Input Phase U sigma-delta bitstream

sync_dat_v Input Phase V sigma-delta bitstream

sync_dat_w Input Phase W sigma-delta bitstream

overcurrent Output Overcurrent status

Table 24. MAX10 ADC Threshold Sink Interface Signals

Signal Name Direction Description

Avalon-MM Interface Signals

clk Input FPGA system clock input

reset_n Input System reset signal, active low

avs_read_n Input Avalon-MM read strobe, active low

avs_write_n Input Avalon-MM write strobe, active low

avs_address[3:0] Input Avalon-MM address bus

avs_writedata[31:0] Input Avalon-MM read data bus

avs_readdata[31:0] Output Avalon-MM write data bus

Avalon-ST Sink Interface Signals

st_1_valid Input ADC 1 threshold valid

st_1_channel[4:0] Input ADC 1 threshold channel index

continued...   
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Signal Name Direction Description

st_1_data Input ADC 1 threshold data

st_2_valid Input ADC 2 threshold valid

st_2_channel[4:0] Input ADC 2 threshold channel index

st_2_data Input ADC 2 threshold data

Conduit Signals

under[15:0] Output Under threshold errors

over[15:0] Output Over threshold errors

Table 25. DC-DC Converter Interface Signals

Signal Name Direction Description

Avalon-MM Interface Signals

avs_clk Input 10MHz clock input

reset_n Input System reset signal, active low

avs_read_n Input Avalon-MM read strobe, active low

avs_write_n Input Avalon-MM write strobe, active low

avs_address[4:0] Input Avalon-MM address bus

avs_writedata[31:0] Input Avalon-MM read data bus

avs_readdata[31:0] Output Avalon-MM write data bus

Conduit Signals

enable_in Input Enable input

bidir_en_n Input Bidirectional conversion enable

fault Input Fault input. If the design asserts the fault input, it clears the
enable bit of the control register, and turns off the DC-DC
converter. The design keeps the enable bit clear, and does
not set again, until the fault input is negated.

pwm_sync_n Input Synchronization signal

gate_a_h Output Phase 0 upper transistor gate drive

gate_a_l Output Phase 0 lower transistor gate drive

gate_b_h Output Phase 1 upper transistor gate drive

gate_b_l Output Phase 1 lower transistor gate drive

dc_dc_on Output DC-DC status

overvoltage Output Overvoltage error

overcurrent Output Overcurrent error

timeout_latch Output Sample timeout

7.16 Registers

The Drive-on-Chip Reference Design v16.0 contains many registers that you can set.
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Table 26. Six-Channel PWM Interface Control and Status Registers
Write reserved bits as zero and read as zero.

Address Name Bits Description Reset Value Access

0x00 - - Reserved - -

0x04 pwm_u [31:15] Reserved - -

[14:0] phase U PWM switching threshold in PWM clocks 0x0 RW

0x08 pwm_v [31:15] Reserved - -

[14:0] phase V PWM switching threshold threshold in PWM clocks 0x0 RW

0x0C pwm_w [31:15] Reserved - -

[14:0] phase W PWM switching threshold threshold in PWM clocks 0x0 RW

0x10 max [31:15] Reserved - -

[14:0] PWM maximum count threshold in PWM clocks 0x0 RW

0x14 block [31:8] Reserved - -

[7:0] PWM blocking (dead time) register threshold in PWM clocks 0x0 RW

0x18 trigger_up [31:15] Reserved - -

[14:0] PWM up count trigger for ADC threshold in PWM clocks 0x0 RW

0x1C trigger_down [31:15] Reserved - -

[14:0] PWM down count trigger for ADC threshold in PWM clocks 0x0 RW

0x20 gate [31:6] Reserved - -

[5] Phase U lower transistor gate signal 0x0 R

[4] Phase U upper transistor gate signal 0x0 R

[3] Phase V lower transistor gate signal 0x0 R

[2] Phase V upper transistor gate signal 0x0 R

[1] Phase W lower transistor gate signal 0x0 R

[0] Phase W upper transistor gate signal 0x0 R

0x24 carrier [31:16] Reserved - -

[15:0] PWM count value threshold in PWM clocks 0x0 R

0x28 multi_cycle [31:4] Reserved - -

[3:0] Cycles to skip for ADC sample strobes 0x0 RW

Table 27. DC Link Monitor Interface Control and Status Registers
Write reserved bits as zero and read as zero.

Address Name Bits Description Reset Value Access

0x00 - - Reserved - -

0x04 offset [31:16] Reserved - -

[15:0] Offset. A value of 16384 corresponds to a zero offset. 0x0 RW

0x08 k_64 [31:1] Reserved - -

continued...   
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Address Name Bits Description Reset Value Access

[0] sinc3 filter decimation rate. When set to 0, the sinc3
decimation rate is M=64; when set to 1, the sinc3
decimation rate is M=128.

0x0 RW

0x0C ref_disable [31:16] Reserved - -

[15:0] DC-link voltage disable level. This register provides the
maximum allowable voltage for link voltage. If the
maximum value is exceeded the overvoltage output is
driven, to shut down the system.

0x0 RW

0x10 link_ref [31:16] Reserved - -

[15:0] DC-link chopper voltage level. The chopper IGBT
transistor is turned on when the DC-link voltage exceeds
this value.

0x0 RW

0x14 bottom_ref [31:16] Reserved - -

[15:0] DC-link undervoltage reference level. If the link voltage
falls below the reference level the undervoltage output is
driven.

0x0 RW

0x18 brake_t [31:11] Reserved - -

[10:0] This register is not used. 0x0 RW

0x1C brake_max_level [31:16] Reserved - -

[15:0] This register is not used. 0x0 RW

0x20 dc_link [31:16] Reserved - -

[15:0] Current link voltage reading 0x0 R

0x24 brake_level [31:16] Reserved - -

[15:0] This register is not used. 0x0 R

0x28 status [31:3] Reserved - -

[2] DC link overvoltage status 0x0 R

[1] DC link undervoltage status 0x0 R

[0] Chopper gate signal status 0x0 R

Table 28. Drive System Monitor Control and Status Registers
Write reserved bits as zero and read as zero. R/W1C bits are read, write a 1 to clear the bit

Address Name Bits Description Reset Value Access

0x00 control [31:3] Reserved - -

[2:0] Control. Write to this register to request a change of state in the
drive system monitor.

0x0 RW

0x04 status [31:12] Reserved - -

[11:9] Current DSM state. 0x0 R

[8] PWM control, upper PWM enable - -

[7] PWM control, lower PWM enable 0x0 R

[6] PWM control, PWM enable - -

[4] IGBT error 0x0 R/W1C
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[3] ADC clock status - R/W1C

[2] Undervoltage status 0x0 R/W1C

[1] Overvoltage status - R/W1C

[0] Overcurrent status 0x0 R/W1C

Table 29. Quadrature Encoder Interface Control and Status Registers
Write reserved bits as zero and read as zero.

Address Name Bits Description Reset Value Access

0x00 control [31:3] Reserved. - -

[2] direction bit. Reverses the count direction when set. 0x0 RW

[1] index_reset_en bit. Count will reset on index pulse if this
bit is set.

0x0 RW

[0] index_capture_en bit. Count will be captured in index
capture reg, when index pulse occurs, if this bit is set.

0x0 RW

0x04 count capture [31:0] Captures current count on each strobe. 0x0 R

0x08 maximum count [31:0] Maximum count. Count will reset to zero when it reaches
this value.

0x3FFF RW

0x0C count [31:0] Current count value. 0x0 RW

0x10 index capture [31:0] Captures current count when index pulse occurs if
index_capture_en bit is set.

0x0 R

Table 30. Sigma-Delta ADC Interface Control and Status Registers
Write reserved bits as zero and read as zero.

Address Name Bits Description Reset Value Access

0x0 - - Reserved - -

0x04 offset_u [31:16] Reserved. - -

[15:0] Offset for phase U. A value of 32,768 corresponds to 0
offset.

0x0 RW

0x08 offset_w [31:16] Reserved. - -

[15:0] Offset for phase W. A value of 32,768 corresponds to 0
offset.

0x0 RW

0x0C i_peak [31:10] Reserved. - -

[9:0] Overcurrent detection threshold. 0x0 RW

0x10 d [31:3] Reserved. - -

[2] sinc3 filter decimation rate. When set to 0, the sinc3
decimation rate is M=128 for the control loop and M=16
for overcurrent detection; when set to 1, the sinc3
decimation rate is M=64 for the control loop and M=8 for
the overcurrent detection.

0x0 RW

[1] Overcurrent enable 0x0 RW

[0] Overvoltage enable 0x0 RW
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0x14 irq_ack [31:1] Reserved. - -

[0] 0x0 W1C

0x18 status [31:5] Reserved. - -

[4] 0x0 R

[3] 0x0 R

[2] Overcurrent for phase U 0x0 R

[1] Overcurrent for phase W 0x0 R

[0] Overcurrent for any phase 0x0 R

0x1C i_u [31:10] Reserved. - -

[9:0] Current in phase U. 0x0 R

0x20 i_w [31:10] Reserved. - -

[9:0] Current in phase W. 0x0 R

0x24 i_peak [31:10] Reserved. - -

[9:0] Overcurrent detection threshold. 0x0 RW

0x28 i_v [31:10] Reserved. - -

[9:0] Current in phase V. 0x0 R

0x2C offset_v [31:16] Reserved. - -

[15:0] Offset for phase V. A value of 32,768 corresponds to 0
offset.

0x0 RW

0x2C Overcurrent_u [31:10] Reserved. - -

[9:0] Overcurrent value for phase U 0x0 R

0x2C Overcurrent_v [31:10] Reserved. - -

[9:0] Overcurrent value for phase V 0x0 R

0x2C Overcurrent_w [31:10] Reserved. - -

[9:0] Overcurrent value for phase W 0x0 R

Table 31. MAX10 ADC Threshold Sink Control and Status Registers
Write reserved bits as zero and read as zero

Address Name Bits Description Reset Value Access

0x00 capture under enable [31:16] Reserved. - -

[15:0] Enable latching of under threshold errors. One bit
per ADC channel.

0 RW

0x04 capture over enable [31:16] Reserved. - -

[15:0] Enable latching of over threshold errors. One bit per
ADC channel.

0 RW

0x08 output under enable [31:16] Reserved. - -

[15:0] Enable output of under threshold errors. One bit per
ADC channel.

0 RW
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0x0C output over enable [31:16] Reserved. - -

[15:0] Enable output of over threshold errors. One bit per
ADC channel.

0 RW

0x10 latch under [31:16] Reserved. - -

[15:0] Latched under threshold errors. One bit per ADC
channel.

0 R

0x14 latch over [31:16] Reserved. - -

[15:0] Latched over threshold errors. One bit per ADC
channel.

0 R

0x18 output under [31:16] Reserved. - -

[15:0] Under threshold output status. One bit per ADC
channel.

0 R

0x1C output over [31:16] Reserved. - -

[15:0] Over threshold output status. One bit per ADC
channel.

0 R

0x20 set under error [31:16] Reserved. - -

[15:0] Set under threshold errors. One bit per ADC
channel. Write 1s to set error bits.

0 W1S

0x24 set over error [31:16] Reserved. - -

[15:0] Set over threshold errors. One bit per ADC channel.
Write 1s to set an error bits.

0 W1S

0x28 clear under error [31:16] Reserved. - -

[15:0] Clear under threshold errors. One bit per ADC
channel. Write 1s to clear error bits.

0 W1C

0x2C clear over error [31:16] Reserved. - -

[15:0] Clear over threshold errors. One bit per ADC
channel. Write 1s to clear error bits.

0 W1C

Table 32. DC-DC Converter Control and Status Registers
Write reserved bits as zero and read as zero

Address Name Bits Description Reset Value Access

0x00 control [31:3] Reserved - -

[2] Enable regeneration 0 RW

[1] Enable closed loop mode 0 RW

[0] Enable Dc-DC gated with enable_in input 0 RW

0x04 cmd_dc [31:14] Reserved - -

[13:0] Commanded DC-DC output level in 1V increments 0 RW

0x08 fault_reg [31:7] Reserved - -

[6] Sample timeout 0 RW

[5] Input overvoltage detected 0 RW

[4] Input undervoltage detected 0 RW
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[3] Output overvoltage detected 0 RW

[2] Output undervoltage detected 0 RW

[1] Input overcurrent detected 0 RW

[0] Output overcurrent detected 0 RW

0x0C - - Reserved 0 -

0x10 duty [31:14] Reserved - -

[13:0] Duty cycle for open loop mode, 0 – 100 0 RW

0x14 freq [31:14] Reserved - -

[13:0] Frequency of operation, kHz 62 RW

0x18 timeout [31:16] Reserved - -

[15:0] Sample timeout in system clocks. 2000 RW

0x1C timeout_status [31:16] Reserved - -

[15:0] Current timeout count
Read the current state of the watchdog.

2000 R

0x20 fb_current_a [31:13] Reserved - -

[12:0] Phase 0 current feedback sample, 100 = 1A 0 RW

0x24 fb_current_b [31:13] Reserved - -

[12:0] Phase 1current feedback sample, 100 = 1A 0 RW

0x28 fb_voltage [31:13] Reserved - -

[12:0] Phase 1current feedback sample, 40 = 1V 0 RW

0x2C - - Reserved 0 -

0x30 - - Reserved 0 -

0x34 - - Reserved 0 -

0x38 - - Reserved 0 -

0x3C - - Reserved 0 -

0x40 pgain_voltage [31:14] Reserved - -

[13:0] P gain coefficient for voltage control loop * 100
[AC TODO] resolution? Scale?

300 RW

0x44 igain_voltage [31:14] Reserved - -

[13:0] I gain coefficient for voltage control loop * 1e-7 (1/
avs_clk)

4000 RW

0x48 pgain_current [31:14] Reserved - -

[13:0] P gain coefficient for current control loop * 1000 20 RW

0x4C igain_current [31:14] Reserved - -

[13:0] I gain coefficient for current control loop * V 25 RW
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Related Links

• Altera White Paper Motor Control Designs with an Integrated FPGA Design Flow

• Altera Tandem Motion-Power 48 V Board Reference Manual

• FalconEye website
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